Math, asked by apurva0623, 1 year ago

The digit of two digit number differ by 3 if the digit are interchanged and the resulting number is added to the original number,we get 143 what can be the original number​

Answers

Answered by Anonymous
71

Answer:

Original number is 85.

Step-by-step explanation:

\bold{\underline{\underline{Assume\::}}}

Let the -

  • Ten's digit be M
  • One's digit be N

We have

  • Original number = 10M + N
  • Revered number = 10N + M

\bold{\underline{\underline{Solution\::}}}

According to question,

The two digits number are differ by 3.

\implies\:M\:-\:N\:=\:3

\implies\:M\:=\:3\:+\:N ____ (eq 1)

If the digit are interchanged and the resulting number is added to the original number, we get 143.

\implies\:10N\:+\:M\:+\:10M\:+\:N\:=\:143

\implies\:11N\:+\:11M\:=\:143

\implies\:N\:+\:M\:=\:13

\implies\:N\:+\:3\:+\:N\:=\:13

[From (eq 1)]

\implies\:2N\:=\:10

\implies\:N\:=\:5

Substitute value of N in (eq 1)

\implies\:M\:=\:3\:+\:5

\implies\:M\:=\:8

Original number : 10M + N

→ 10(8) + 5

→ 80 + 5

→ 85

Original number is 85.

Answered by BrainlyConqueror0901
73

Answer:

{\bold{\therefore Original\:number=85}}

Step-by-step explanation:

{\bold{\huge{\underline{SOLUTION-}}}}

• In the given question information given about a two digit number whose difference between their ones and tens place is given and their sum of original number and reversed number is given.

• We have to find the original number.

 \underline \bold{Given : } \\ \\  \implies Let\:Original \:  number = 10x + y\\  \\  \implies Reversed \: number = 10y + x \\  \\   \underline  \bold{To \: Find :  } \\ \implies Original \: number = ?

• According to given question :

 \bold{Difference \: between \:them \: is \: 3}\\  \implies x - y = 3 -  -  -  -  - (1) \\  \\  \bold{Sum \: of \: Original \:and \: Reversed \: number \:  is \: 143}\\  \implies 10x + y + 10y + x = 143 \\  \\  \implies11x + 11y = 143 \\  \\  \implies 11(x + y) = 143 \\  \\  \implies x + y =  \frac{ \cancel{143}}{ \cancel{11}}  \\   \\  \implies x + y = 13 -  -  -  -  - (2) \\  \\  \bold{Subtracting  \: (2) \: from \: (1).we \: get} \\  \implies x - y  - (x + y) = 3 - 13 \\  \\  \implies  \cancel x - y -  \cancel x - y =  - 10 \\  \\  \implies   \cancel- 2y =   \cancel- 10 \\  \\  \implies y =  \frac{  \cancel{10}}{ \cancel2}  \\  \\   \bold{\implies y = 5} \\  \\ \bold{Putting \: value \: of \: y \: in  \: (1)} \\  \implies x - y = 3 \\  \\  \implies x - 5 = 3 \\  \\  \implies x = 3 + 5 \\  \\   \bold{\implies x = 8} \\  \\   \bold{\therefore Original \: number = 10x + y = 85}

Similar questions