Math, asked by YyYyY97, 8 months ago

The digits in the ten's place of a two-digit number is three times that in the units place. If the digits are reversed, the new number will be 36 less then the original number. Find the original number

Answers

Answered by Anonymous
114

━━━━━━━━━━━━━━━━━━━━━━━━━

Question:-

The digits in the ten's place of a two-digit number is three times that in the units place. If the digits are reversed, the new number will be 36 less then the original number. Find the original number

━━━━━━━━━━━━━━━━━━━━━━━━━

Answer:-

Let the one's digit be y and tens digit be x,

\bold{Number = 10x + y}

\bold{Then,x=3y⋯(i)}

Reversed number = 10y + x

Reversed number = 10y + xA.t.Q :- (10x+y)−(10y+x)=36 Put x = 3y in eq. (i)

\bold{⇒9x−9y=36}

\bold{⇒x−y=4⋯(ii)}

\bold{⇒3y−y=4}

\bold{∴2y=4  x=3y  ∴x=6}

\bold{y=2}

\large \blue{ \boxed{ \red{ \bf ∴ Number = 62}}}

\huge\blue{\ddot\smile}

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
1

\huge\boxed{\fcolorbox{black}{pink}{Answer}}</p><p>

Let the one's digit be y and tens digit be x,

Number = 10x + y Number=10x+y

Then,x=3y⋯(i) Then,x=3y⋯(i)

Reversed number = 10y + x

Reversed number = 10y + xA.t.Q :- (10x+y)−(10y+x)=36 Put x = 3y in eq. (i)

⇒9x−9y=36 ⇒9x−9y=36

⇒x−y=4⋯(ii) ⇒x−y=4⋯(ii)

⇒3y−y=4 ⇒3y−y=4

∴2y=4 x=3y ∴x=6 ∴2y=4x=3y∴x=6

y=2 y=2

Number = 62

Similar questions