the digits of a 2 digit number differ by 5.if the digit are interchanged and the resulting number is added to the original number we get 99 find the original number
Answers
A.T.Q,
x - y = 5 ------(i)
10y + x + 10x + y = 99
11y + 11x = 99
x + y = 9
x - y = 5
x + y = 9
--------------
2x = 14
--------------
x = 7
x - y = 5
7 - y = 5
-y = -2
y = 2
Original Number = 72
Given:
The digits of a two digit number differ by 5.If the digit are interchange and the resulting number is added to the original number we get 99.
To find:
The original number.
Explanation:
Let the unit's digit be M &
Let the ten's digit be R
∴ The original number= 10R+M.
If the digits are interchanged then resulting number=10R+M.
According to the question:
R - M= 5.................(1)
&
→ (10M+R)+ (10R+M)= 99
→ 10R +M +10M+R= 99
→ 10R +R+ M+10M= 99
→ 11R +11M= 99
→ R + M= 9....................(2)
- Using Substitution Method:
From equation (1),we get;
⇒ R - M= 5
⇒ R= 5 +M................(3)
Putting the value of R in equation (2), we get;
⇒ 5+M +M= 9
⇒ 5+ 2M= 9
⇒ 2M = 9 -5
⇒ 2M = 4
⇒ M=
∴M= 2
Now,
Putting the value of M in equation (3), we get;
⇒ R= 5+ 2
⇒ R= 7
Thus,
The original number is 10(7)+ 2
The original number is 70+2 = 72.