Math, asked by dhananjayac1972, 10 months ago

The digits of a positive integer, having three digits are in A. P and their sum is 15.The number obtained by reversing the digits is 594 less than the original number. Find the number ​

Answers

Answered by EliteSoul
93

AnswEr:-

Three digits number = 852

\rule{200}{2}

Let the three digits of the number be a, a + d & a + 2d as they are in A.P

Number = a + 10(a + d) + 100(a + 2d)

Case 1:-

⇒ a + (a + d) + (a + 2d) = 15

⇒ a + a + d + a + 2d = 15

⇒ 3a + 3d = 15

⇒ 3(a + d) = 15

⇒ a + d = 15/3

a + d = 5 [Eq.1]

Case 2:-

Number obtained by reversing digits:-

Number = 100a + 10(a + d) + (a + 2d)

According to question:-

⇒ [a + 10(a + d) + 100(a + 2d)] - [100a + 10(a + d) + (a + 2d)] = 594

⇒ a + 10a + 10d + 100a + 200d - 100a - 10a - 10d - a - 2d = 594

⇒ 111a + 210d - 111a - 12d = 594

⇒ 198d = 594

⇒ d = 594/198

d = 3

Put this value in (Eq.1)

⇒ a + 3 = 5

⇒ a = 5 - 3

a = 2

\rule{150}{1}

⋆ THREE DIGITS OF THE NUMBER:-

↠ First digit = a = 2

↠ Second digit = a + d = 2 + 3 = 5

↠Third digit = a + 2d = 2 + 2(3)= 2 + 6 = 8

\rule{150}{2}

⋆ THREE DIGITS NUMBER :-

⇒ Number = 2 + 10(2 + 3) + 100{2 + 2(3)}

⇒ Number = 2 + 10(5) + 100(8)

⇒ Number = 2 + 50 + 800

Number = 852

Therefore,

Three digits number = 852 .

Answered by Anonymous
22

Given :

  • The digits of a positive integer, having three digits are in A. P.
  • The sum of the three digits is 15.
  • The number obtained on reversing the digit is 594 less than the original number.

To Find :

  • The original number.

Solution :

Let the digit at the hundredth place be (a+d)

Let the digit at the tens place be a

Let the digit at the units place be (a-d)

Original Number = \bold{100(a+d)+10a+a-d}

Case 1 :

Sum of the digits of hundredth place, tens place and units place is 15.

Equation :

\sf{(a+d) +(a)+(a-d)=15}

\sf{a+d+a+a-d=15}

\sf{3a=15}

\sf{a=\dfrac{15}{3}}

\sf{a=5\:\:\:\:(1)}

Case 2 :

When the digits are reversed of the original number, the new number formed is 594 less than the original number.

Reversed Number = \bold{100(a-d)+10a+a+d}

Equation :

\sf{100(a-d) +10a+a+d=100(a+d)+10a+(a-d) -594}

\sf{100(5-d)+10(5)+5+d=100(5+d)+10(5)+(5-d)-594}

\bold{\big[From\:equation\:(1),\:a\:=\:5\big]}

\sf{500-100d+50+5+d=500+100d+50+5-d-594}

\sf{500+50+5-100d+d=500+50+5-d-594}

\sf{555-100d+d=555+100d-d-594}

\sf{-100d+d=100d-d-594}

\sf{-99d=99d-594}

\sf{-99d-99d=-594}

\sf{-198d=-594}

\sf{d=\dfrac{-594}{-198}}

\sf{d=\dfrac{594}{198}}

\sf{d=3\:\:\:(2)}

Number :

\large{\boxed{\bold{Hundreth\:digit\:=\:100(a+d)=100(5+3)=100(8)=800}}}

\large{\boxed{\bold{Ten's\:digit\:=\:10a\:=\:10(5)=50}}}

\large{\boxed{\bold{Unit's\:digit\:=\:(a-d)\:=\:5-3=2}}}

\large{\boxed{\bold{\purple{Original\:Three\:digit\:Number\:\:=100(a+d)+10a+a-d=852}}}}

Similar questions