The digits of a positive number of 3 digits area in A.P. and their sum is 15. The number obtained by reversing the digit is 594 less. Find the number!! fast.. Tomorrow exam!
GeniuSk101:
Siddhartrao.. where's ur answer!
Answers
Answered by
11
Hello!
:-
• The digit at the tens place be .
• The digit at the hundredth place be
• The digit at the ones place be
Then,
:
(a + d) + a + (a – d) = 15
⇒ 3a = 15 ⇒ a = ⇒
Now :
⇒ (555 + 99d) – (555 - 99d) = 594
⇒ 198d = 594 ⇒ d = ⇒
Therefore,
• a = 5
• (a + d) = (5 + 3) = 8
• (a – d) = (5 – 3) = 2
Hence,
The number formed = =
Cheers!
:-
• The digit at the tens place be .
• The digit at the hundredth place be
• The digit at the ones place be
Then,
:
(a + d) + a + (a – d) = 15
⇒ 3a = 15 ⇒ a = ⇒
Now :
⇒ (555 + 99d) – (555 - 99d) = 594
⇒ 198d = 594 ⇒ d = ⇒
Therefore,
• a = 5
• (a + d) = (5 + 3) = 8
• (a – d) = (5 – 3) = 2
Hence,
The number formed = =
Cheers!
Answered by
0
Answer:
Let
:-
• The digit at the tens place be \red{\bf{a}}a .
• The digit at the hundredth place be \red{\bf{(a + d)}}(a+d)
• The digit at the ones place be \red{\bf{(a - d)}}(a−d)
Then,
\underline{\bf{Sum\: of \:the \:digits}}
Sumofthedigits
:
(a + d) + a + (a – d) = 15
⇒ 3a = 15 ⇒ a = \dfrac{15}{3}
3
15
⇒ \boxed{\bf{a = 5}}
a=5
Now :
⇒ (555 + 99d) – (555 - 99d) = 594
⇒ 198d = 594 ⇒ d = \dfrac{594}{198}
198
594
⇒ \boxed{\bf{d = 3}}
d=3
Therefore,
• a = 5
• (a + d) = (5 + 3) = 8
• (a – d) = (5 – 3) = 2
Hence,
The number formed = 100(8) + 10(5) + 1(2)100(8)+10(5)+1(2) = \boxed{\blue{\bf{852}}}
852
Step-by-step explanation:
I think it help you thank you please mark me as brainliest answer please tap on it and verify my answer please
Similar questions