Math, asked by Promaxz, 1 month ago

The digits of a two-digit number differ by 3. If digits are interchanged  and the resulting number is added to the original number, we get 121.  Find the original number.​

Answers

Answered by Anonymous
129

  • To find : Original number

Solution

  • Given Conditions

★ The digits of a two-digit number differ by 3.

★ If digits are interchanged  and the resulting number is added to the original number, we get 121. 

  • According to the first condition

Consider the two numbers be x and y. These two numbers are differ by 3

Eqⁿ (1) : x - y = 3

  • According to the second condition

Original number = 10x + y

Reversed or interchanged number = 10y + x

→ Interchanged number + original number = 121

→ 10y + x + 10x + y = 121

→ 11y + 11x = 121

→ 11(x + y) = 121

→ x + y = 11

Eqⁿ (2) : x + y = 11.

  • Add both the equation

→ x + y + x - y = 11 + 3

→ 2x = 14

→ x = 7

  • Substitute the value of x in eqⁿ (1)

→ x - y = 3

→ 7 - y = 3

→ y = 7 - 3

→ y = 4

•°• Original number = 10x + y = 74

\: ━━━━━━━━━━━━━━━━━━━━━━━━

Answered by MяMαgıcıαη
143
  • \Large\boxed{\sf{\blue{Original\:number = 74}}}

▬▬▬▬▬▬▬▬▬▬▬▬

Explanation :

\underline{\bf\dag{\underline{\green{Given}}}:}

  • The digits of a two-digit number differ by 3.
  • If digits are interchanged and the resulting number is added to the original number, we get 121.

\underline{\bf\dag{\underline{\green{To\:Find}}}:}

  • Original number = ?

\underline{\bf\dag{\underline{\green{Solution}}}:}

  • Let the two numbers be m and n.

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

\underline{\bf\dag{\underline{\green{In\:1^{st}\:case}}}:}

Atq,

\qquad\leadsto\quad\sf m - n = 3\qquad\qquad \bigg\lgroup eq^{n}\:(1) \bigg\rgroup

\underline{\bf\dag{\underline{\green{In\:2^{nd}\:case}}}:}

\qquad\bf\dag\:\bigg\lgroup \sf{ Original\:number\:=\:10m + n} \bigg\rgroup

\qquad\bf\dag\:\bigg\lgroup \sf{ Interchanged\:number\:=\:10n + m} \bigg\rgroup

Atq,

\qquad\leadsto\quad\small\sf Original\:number + Interchanged\:number = 121

\qquad\leadsto\quad\sf 10m + n + 10n + m = 121

\qquad\leadsto\quad\sf 11m + 11n = 121

\qquad\leadsto\quad\sf 11(m + n) = 121

\qquad\leadsto\quad\sf m + n = \dfrac{121}{11}

\qquad\leadsto\quad\sf m + n = \dfrac{\cancel{121}}{\cancel{11}}

\qquad\leadsto\quad\sf m + n = 11\qquad\qquad \bigg\lgroup eq^{n}\:(2) \bigg\rgroup

Now,

Adding [eqⁿ (1)] and [eqⁿ (2)] :-

\qquad\leadsto\quad\sf (m - n) + (m + n) = 3 + 11

\qquad\leadsto\quad\sf m - n + m + n = 14

\qquad\leadsto\quad\sf m - \cancel{n} + m + \cancel{n} = 14

\qquad\leadsto\quad\sf m + m = 14

\qquad\leadsto\quad\sf 2m = 14

\qquad\leadsto\quad\sf m = \dfrac{14}{2}

\qquad\leadsto\quad\sf m = \dfrac{\cancel{14}}{\cancel{2}}

\qquad\leadsto\quad\bf{ m = \red{7}}

Putting value of "m" in [eqⁿ (2)] :-

\qquad\leadsto\quad\sf 7 + n = 11

\qquad\leadsto\quad\sf n = 11 - 7

\qquad\leadsto\quad\bf{ n = \red{4}}

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

\small\therefore\:{\underline{\sf{Hence,\:original\:number\:=\:\bf{74}\:\sf{respectively.}}}}

▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions