Math, asked by deepakscholar385, 2 months ago

The digits of a two-digit number differ by 3. If the digits are interchanged and the resulting number is added to the original number, we get 143. What can be the original number?
.
★Answer correctly. Don't spam.​

Answers

Answered by BrainlyRish
18

\bf Given  \:\begin {cases} \sf The \:digits\: of \:a\: two-digit\: number\: differ\; by\:\frak 3\:\sf . \\\\  \sf The\: digits \:are\: interchanged\: and \:the \:resulting\: number\: is\:\\\qquad  \sf added\: to\:the\: original\: number\:,\: we \:get\:\frak  143\:\sf .\:\\\end {cases}\\\\

Exigency To Find : The Original number .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's say that the digit at once place be x .

⠀⠀⠀⠀Given that ,

⠀⠀⠀⠀⠀▪︎⠀The digits of a two-digit number differ by 3.

\qquad\longmapsto \sf Tens \: Digit \:- \: Once \: Digit \:=\: 3\:\\\\\longmapsto \sf Tens \: Digit \:- \: x \:=\: 3\:\\\\\longmapsto \sf Tens \: Digit \: \:=\: x +  3\:\\\\\longmapsto {\underline \purple{\pmb Tens \: Digit \:=\: x + 3 \:}}\\\\

⠀⠀⠀⠀⠀Therefore ,

⠀⠀⠀⠀⠀▪︎⠀The two digit or original number number will be :

\qquad \longmapsto \sf \:\:Two\:-\:Digit \:_{(Number )} \: = \: 10(x + 3)+x \:\\\\  \longmapsto \sf \:\:Two\:-\:Digit \:_{(Number )} \: = \: 10x + 30+x \:\\\\  \longmapsto \underline{\purple { \pmb \:\:Two\:-\:Digit \:_{(Number )} \: = \: 11x + 30}} \:\\\\

⠀⠀⠀⠀⠀☆ On Inter - Changing the Digits :

⠀⠀⠀▪︎ Once Digit number will be ( x + 3 ) .

⠀⠀⠀▪︎ Tens Digit number will be x .

⠀⠀⠀⠀⠀Therefore ,

⠀⠀⠀⠀⠀▪︎⠀The two digit number will be on inter changing the digits :

\qquad \longmapsto \sf \:\:Two\:-\:Digit \:_{(Number )} \: = \: 10(x) + x + 3 \:\\\\  \longmapsto \sf \:\:Two\:-\:Digit \:_{(Number )} \: = \: 10x + x+3  \:\\\\  \longmapsto \pmb \:\underline{\purple{\:Two\:-\:Digit \:_{(Number )} \: = \: 11x + 3 }}\:\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:According \:to\: the \: Question \::}}\\

⠀⠀━━━ The digits are interchanged and the resulting number is added to the original number, we get 143.

\qquad : \implies \sf Original \:number \: + \: \;Number \:on \:Interchanging \:= 143 \:\\\\ : \implies \sf  11x + 30   \: + \: 11 x + 3  \:= 143 \:\\\\ : \implies \sf  22x + 30   \:  + 3  \:= 143 \:\\\\ : \implies \sf  22x + 33 \:= 143 \:\\\\:\implies \sf  22x \:= 143 - 33\:\\\\ : \implies \sf  22x\:= 110 \:\\\\ : \implies \sf  x  \:= \dfrac{110}{22}\:\\\\ : \implies \bf  x  \:= 5\:\\\\ \qquad:\implies \pmb{\underline{\purple{\:x = 5 }} }\:\bigstar \\

⠀⠀⠀Therefore,

⠀⠀⠀⠀⠀▪︎ The two-digit original is : 11x + 30 = 11 (5) + 30 = 55 + 30 = 85 .

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:The \:two\: Digit \:original\: numbern\:will\:be\:\bf{85}}.}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by AbhinavRocks10
15

\sf✵ANSWER✵

  • Step-by-step explanation:

  • Let the digit in the tens place be x

And, the digit in units place be y

The original number = 10x + y

Case 1:-

The number formed by interchanging the digits = 10y + x

  • As, the digits differ by 3

\sf\color{purple}⇢ x - y = 3...(i)

  • Case 2:-

⇢ The interchanged number + Original number = 143

\sf\color{purple}⇢ 10y + x + 10x + y = 143

\sf\color{purple}⇢ 11x + 11y = 143

Dividing the whole equation by 11

\sf\color{red}⇢ x + y = 13...(ii)

Adding equation (i) and (ii)

\rm⇢ x - y + x + y = 3 + 13

\rm⇢ 2x = 16

\rm⇢ x = \dfrac{16}{2}  = 8

Substituting x = 8 in equation (ii)

⇢ x + y = 13

\rm⇢ 8 + y = 13

\rm⇢ y = 13 - 8

\rm\color{blue}⇢ y = 5

The original number = 10x + y

  • = 10(8) + 5

  • = 80 + 5

  • = 85

Therefore:-

The original number = 85

Similar questions