the digits of a two digit number differ by 5 if the digit are interchanged and the resulting number is added to the orginal number we get 121 find the number
Answers
AnswEr:-
Two digits number = 38
Solution:-
Let the digit at unit's place be y & digit at ten's place be z where y > z
∴ Two digit number = y + 10z
Case 1:-
⇒ y - z = 5
⇒ y = z + 5 [Eq.i]
Case 2:-
★ Interchanged number:-
⇒ New number = z + 10y
According to question:-
⇒ y + 10z + z + 10y = 121
⇒ 11y + 11z = 121
⇒ 11(y + z) = 121
⇒ y + z = 121/11
⇒ y + z = 11
⇒ y = 11 - z [Eq.ii]
Comparing both equations -
⇒ z + 5 = 11 - z
⇒ z + z = 11 - 5
⇒ 2z = 6
⇒ z = 6/2
⇒ z = 3
So, digit at ten's place = z = 3
Putting this value in (Eq.i)
⇒ y = 3 + 5
⇒ y = 8
So, digit at unit's place = y = 8
★ Two digit number:-
⇒ Number = 8 + 10(3)
⇒ Number = 8 + 30
⇒ Number = 38
Therefore,
Answer:
Given:
• The digits of a two digit number differ by 5 if the digit are interchanged and the resulting number is added to the orginal number we get 121.
Find:
• Find the number.
According to the question:
• Let us assume 'x' as the digit at units place and 'y' be the digit at ten's place.
We know that:
• Units place (>) Tens place [x > y].
Using formula:
⇒ Units place - Ten's place = 5
⇒ (x - y) = 5
⇒ x = (y + 5) - Equation (1)
Note:
• Sometimes when there a brackets between some number and that bracket means multiplication sign.
Finding the new number:
⇒ New number = (y + 10x).
⇒ [(x + 10y) + (y + 10x)] = 121
⇒ (11x + 11y) = 121
⇒ 11 (x + y) = 121
⇒ (x + y) = 121/11
⇒ (x + y) = 11
⇒ x = (11 - y) - Equation (2)
Comparing equation (1) & (2):
⇒ [(y + 5) = (11 - y)]
⇒ [(y + y) = (11 - 5)]
⇒ 2y = 6
⇒ y = 6/2
⇒ y = 3
Therefore, 3 is digit at ten's place.
Adding values to equation (1):
⇒ x = (3 + 5 = 8)
⇒ x = 8
Therefore, 8 is units place.
Now, let's find the 'number' using the values:
⇒ 8 + 10 (3)
⇒ 8 + 30
⇒ 38
Therefore, 38 is the original number.