Physics, asked by Roshanguptarg5352, 1 year ago

The dimensional formula for gravitational constant G is
a) [ML³T⁻²]
b) [M⁻¹L³T⁻²]
c) [M⁻¹L⁻³T⁻²]
d) [ML⁻³T²]

Answers

Answered by tiwaavi
8
Correct option (b) -  M⁻¹L³T⁻²

The dimensional formula for gravitational constant is M⁻¹L³T⁻²

Explanation :-

We know that the formula of gravitational Force 

F = Gm_{1}m_{2} /r^2

Gravitational constant  G = Fr^2/m_{1} m_{2}  ----→(i)

Now we know the gravitational formula for Force
 F = ma 
 F = M¹L¹T⁻²

Now in the equation (i)
G =  \frac{M^1 L^1 T^-2 ( L^2 )}{M^1 M^1}  

G = M¹L³T⁻²/M²
G = M⁻¹L³ T⁻²


Hence the Dimension of Gravitational constant G is  M⁻¹L³ T⁻² .



Hope it Helps. :-)
Answered by QGP
3
The Universal Gravitational Constant can be seen in Newton's Universal Law of Gravitation:

\boxed{F = G\frac{m_1m_2}{r^2}}

Here,
F = Gravitational Force
m_1 \, \, and \, \, m_2 = Masses
r = Distance between centers of masses

We need the Dimension of Force.

F = ma
So, Unit of Force = kg \, m/s^2
So, dimensions are:

[\, F \, ] = [ \, M \, L \, T^{-2} \, ]


We have:

F = G \frac{m_1m_2}{r^2} \\ \\ \\ \implies G = \frac{Fr^2}{m_1m_2} \\ \\ \\ \implies [ \, G \, ] = \frac{[ \, F \, ] \, \, [ \, r^2 \, ]}{[ \, m_1 \, ] \, \, [ \, m_2 \, ]} \\ \\ \\ \implies [ \, G \, ] = \frac{[ \, M \, L \, T^{-2} \, ] \, \, [ \, L^2 \, ]}{[ \, M \, ] \, \, [ \, M \, ]} \\ \\ \\ \implies [ \, G \, ] = \frac{[ \, M \, L^3 \, T^{-2} \, ]}{[ \, M^2 \, ]} \\ \\ \\ \implies \boxed{[ \, G \, ] = [ \, M^{-1} \, L^3 \, T^{-2} \, ]}

Thus, the answer is Option b)  [ \, M^{-1} \, L^3 \, T^{-2} \, ]

Similar questions