The dimensions of a box are x, 2x, and 3x. Each dimension is decreased by 2. Calculate the volume of the box.
Answers
Question :
The dimensions of a box are x, 2x, and 3x. Each dimension is decreased by 2. Calculate the volume of the box.
Solution :
Dimensions of a box
- Length = x
- Breadth =2x
- Height=3x
Now each dimension is decreased by 2.
New Dimensions of a box :
- Length = x-2
- Breadth =2x-2
- Height=3x-2
Diagram : Box
Volume of the box
= Length ×Breadth ×Height
Hence ,The volume of box is
Answer:
Dimensions of a box
Length = x
Breadth =2x
Height=3x
Now each dimension is decreased by 2.
New Dimensions of a box :
Length = x-2
Breadth =2x-2
Height=3x-2
Diagram : Box
\setlength{\unitlength}{0.74 cm}\begin{picture}(12,4)\thicklines\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\put(8,5.5){x-2m}\put(4,6.3){2x-2 m}\put(11.2,7.5){3x-2 m}\end{picture}
Volume of the box
= Length ×Breadth ×Height
\sf{=(x-2)(2x-2)(3x-2)}=(x−2)(2x−2)(3x−2)
\sf{=(2x^2-2x-4x+4)(3x-2)}=(2x
2
−2x−4x+4)(3x−2)
\sf{=(2x^2-6x+4)(3x-2)}=(2x
2
−6x+4)(3x−2)
\sf{=6x^3-18x^2+12x-4x^2+12x-8}=6x
3
−18x
2
+12x−4x
2
+12x−8
\sf{=6x^3-22x^2+24x-8}=6x
3
−22x
2
+24x−8
Hence ,The volume of box is \sf{6x^3-22x^2+24x-8}6x
3
−22x
2
+24x−8