Math, asked by Anonymous, 10 months ago

The dimensions of a cuboid are in a ratio 1:2:3 and it's total surface area is 88m².
Find the volume.

Answers

Answered by satvik2356
2

Step-by-step explanation:

check it out.........

Attachments:
Answered by silentlover45
3

\underline\mathfrak\pink{Given:-}

  • Dimensions of a cuboid ratio = 1 : 2 : 3
  • Total surface area of cuboid is 88m²

\large\underline\mathfrak{To \: find:-}

  • Find the volume of cuboid ....?

\large\underline\mathfrak\pink{Solutions:-}

  • Let the length, breadth and height of the cuboid be x, 2x and 3x.

Now,

\: \: \: \: \: \therefore \: \: Total \: \: surface \: \: area \: \: of \: \: the \: \: cuboid \: \: = \: \: {2} \: {(lb \: + \: {bh} \: + \: {hl})}

\: \: \: \: \: \leadsto \: \: {88} \: \:  = \: \: {2} \: {(x \: \times \: {2x} \: + \: {2x} \: \times \: {3x} + \: {3x} \: + \: {x})}

\: \: \: \: \: \leadsto \: \: {88} \: \:  = \: \: {2} \: {({2x}^{2} \: + \: {6x}^{2} + \: {3x}^{2})}

\: \: \: \: \: \leadsto \: \: {88} \: \:  = \: \: {2} \: {({11x}^{2})}

\: \: \: \: \: \leadsto \: \: {88} \: \:  = \: \: {22x}^{2}

\: \: \: \: \: \leadsto \: \: {x}^{2} \: \:  = \: \: \frac{88}{22}

\: \: \: \: \: \leadsto \: \: {x}^{2} \: \:  = \: \: {4}

\: \: \: \: \: \leadsto \: \: {x} \: \:  = \: \: {\sqrt{4}}

\: \: \: \: \: \leadsto \: \: {x} \: \:  = \: \: {2}

\: \: \: \: \: Thus, \\ \: \: \therefore \: \: \: Dimensions \: \: of \: \: cuboid

\: \: \: \: \: \leadsto \: \: Length \: \: = \: \: x \: \: = \: \: {2} \: {m}

\: \: \: \: \: \leadsto \: \: Breadth \: \: = \: \: {2x} \: \: = \: \: {2} \: \times \: {2} \: \: = \: \: {4} \: {m}

\: \: \: \: \: \leadsto \: \: Height \: \: = \: \: {3x} \: \: = \: \: {3} \: \times \: {2} \: \: = \: \: {6} \: {m}

\: \: \: \: \: \therefore \: \: Volume \: \: of \: \: = \: \: cuboid \: \: = \: \: l \: \times \: b  \: \times \:  h

\: \: \: \: \: \leadsto \: \: {2} \: \times \: {4}  \: \times \:  {6}

\: \: \: \: \: \leadsto \: \: {48}

\: \: \: \: \: \: \: \: Hence, \\ \: \: Volume \: \: of \: \: cuboid \: \: {48} \: {m}^{3}.

__________________________

Similar questions