Math, asked by pooja0206, 3 months ago

The Dimensions of a cuboid are in a ratio of 3:2:1 . The volume of the cuboid is 3072 cm³. The the Dimensions of the cuboid.​

Answers

Answered by BlurredBlues
3

Let the length of the cuboid =x, breadth =2x, height =3x

Total surface area of a cuboid =2(l×b+b×h+l×h)

Given, total surface area of the cuboid =88m²

⇒2(x×2x+2x×3x+x×3x)=88m

⇒x=2

Hence, the length of the cuboid = x = 2m,

breadth =2x=4m,

height =3x=6m

Answered by Agamsain
21

Answer :-

  • Length of Cuboid = 24 cm
  • Breadth of Cuboid = 16 cm
  • Height of Cuboid = 8 cm

Given :-

  • Volume of Cuboid = 3072 cm³

To Find :-

  • Length of Cuboid = ?
  • Breadth of Cuboid = ?
  • Height of Cuboid = ?

Explanation :-

Let the Dimensions of the Cuboid to be '3x', '2x' and '1x' cm.

As we Know,

\blue { \underline { \boxed { \bf \implies Volume \: of \: Cuboid = L \times B \times H }}}

Making an Equation,

\rm : \longrightarrow L \times B \times H = Volume \: of \: Cuboid

\rm : \longrightarrow 3x \times 2x \times 1x = 3072 \; \; cm^3

\rm : \longrightarrow 6x^2 \times 1x = 3072 \; \; cm^3

\rm : \longrightarrow 6x^3 = 3072 \; \; cm^3

\rm : \longrightarrow x^3 = \dfrac{3072}{6} \; \; cm^3

\rm : \longrightarrow x^3 = 512 \; \; cm^3

\rm : \longrightarrow x = \sqrt[3]{512} \; \; cm^3

\red { \underline { \boxed { \bf : \longrightarrow x = 8 \; \; cm }}}

Now Substituting the values,

\rm \odot \: Length = 3x = 3(8) = \bold{24 \: cm}

\rm \odot \: Breadth= 2x = 2(8) = \bold{16 \: cm}

\rm \odot \: Height = 1x = 1(8) = \bold{8 \: cm}

Hence, the Dimensions of the cuboid are 24 cm x 16 cm x 8 cm.

@Agamsain

Similar questions