Math, asked by minakshi0059, 3 months ago

The dimensions of a cuboid are in ratio 3:2:1 find the dimensions of the cuboid if it's volume is 48 cubic cm​

Answers

Answered by Anonymous
3

Correct Question:-

The dimensions of a cuboid are in ratio 3:2:1 find the dimensions of the cuboid if it's volume is 48 cm³.

Given:-

  • Ratio of dimensions = 3:2:1
  • Volume of cuboid = 48 cm³

To Find:-

  • Dimensions of cuboid

Solution:-

Put x in the ratio,

  • Length of cuboid = 3x
  • Breadth of cuboid = 2x
  • Height of cuboid = x

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \mathfrak{ \underline{ \green{Formula \:  to \:  calculate \:  the \:  volume  \: of  \: cuboid}}}

 \boxed{ \mathfrak{ \purple{ \star \:  \:  \:  \: { \large{ \red{volume = length \times breadth \times height}}}}}}

According to question,

\large{ \tt \longmapsto \:  \:  \:  \:  \:  \:  \:  \:  \:  \:3x \times 2x \times x = 48}

\large{ \tt \longmapsto \: \: \: \: \: \: \: \: \: \:6 {x}^{3}  = 48}

\large{ \tt \longmapsto \: \: \: \: \: \: \: \: \: \: {x}^{3}  =  \frac{48}{6} } \\

\large{ \tt \longmapsto \: \: \: \: \: \: \: \: \: \: {x}^{3}  = 8}

\large{ \tt \longmapsto \: \: \: \: \: \: \: \: \: \:x =   \sqrt[3]{8} }

\large{ \tt \longmapsto \: \: \: \: \: \: \: \: \: { \boxed{\mathfrak{ \blue{x = 2}}}}} \star

Now,

  • Length of cuboid = 3x = 6 cm
  • Breadth of cuboid = 2x = 4 cm
  • Height of cuboid = x = 2 cm

Hence,

  • The dimensions of cuboid are 6 cm,4 cm and 2 cm
Answered by RuSTy99
0

Answer:

Hi

Hdjshdhejdhbdhsjdkd

Similar questions