Math, asked by hathiKakhandala1, 2 months ago

the dimensions of a Cuboid are in the ratio 4 : 2 : 1 and the total surface area is 2800 m2 find its volume.​

Answers

Answered by misscuteangel
40

  \sf \: \red \bigstar \: A \: N \: S \: W \: ER

 \:  \:

 \sf  \red  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 8000  { m}^{2}

 \:  \:

 \sf \red \bigstar \: GIVEN

 \\

RATIO : 4x : 2x : 1x

 \\

 \sf \: ➝ \: length = 4x

 \:

 \sf \: ➝ \: breadth = 2x

 \\

 \sf \: ➝ \: height = 1x

 \\

 \sf \red \bigstar \: SOLUTION

 \\

 \sf \red{FORMULA \: USED : } \\  \sf{volume \: of \: the \: cuboid = l \times b \times h}

 \sf \: ➝ = 4x \times 2x \times 1x = 8x ^{3} \:  \:   \:  \: eq \: (1)

 \\

 \sf \red{FORMULA \: USED : } \\  \sf{total \: surface \: area = 2(lb + bh + hl)}

 \\

 \sf \: ➝ = 2(8 {x}^{2}  + 2 {x}^{2}  + 4 {x}^{2} ) = 16 {x}^{2}  + 4 {x}^{2}  + 8 {x}^{2}

 \\

 \sf \: 2800 {m}^{2}  = 28 {x}^{2}

 \sf {x}^{2}  =  \dfrac{2800}{28}  = 100

 \\

 \sf \sqrt{100}  = x

 \sf10 = x

 \\

Put the value of x in equation ( 1 )

 \sf \:  volume \: = 8(10) ^{3} </strong><strong>

 \\

= 8000 m2

HENCE, THE VOLUME = 8000 m2

Answered by MissPhenomina96
2

ttfyyfuuhfntshhsrjdghgkhgfzggUtdkkf

Similar questions