Math, asked by vachankumawat75, 8 months ago

The dimensions of a cuboid are in the ratio of 3:2:1. if it's total surface area is 1078cm², find it's volume

Answers

Answered by SarcasticL0ve
60

GivEn:-

  • dimensions of a cuboid are in the ratio of 3:2:1.

  • Total surface area of cuboid = 1078cm²

To find:-

  • Volume of cuboid

SoluTion:-

Lets the dimensions of the cuboid be 3x, 2x and x.

⠀⠀⠀⠀⠀⠀⠀

Reference of image is shown in diagram♡

⠀⠀⠀⠀⠀⠀⠀

\setlength{\unitlength}{0.68cm}\begin{picture}(12,4)\linethickness{0.3mm}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\qbezier(6,6)(4,7.3)(4,7.3)\qbezier(6,9)(4,10.2)(4,10.3)\qbezier(11,9)(9.5,10)(9,10.3)\qbezier(11,6)(10,6.6)(9,7.3)\put(8,5.5){\sf{3x cm}}\put(4,6.3){\sf{2x cm}}\put(10,7.5){\sf{x cm}}\end{picture}

⠀⠀⠀⠀⠀⠀⠀

\;\;\star\;{\underline{\underline{\sf{\pink{\;\;As\;per\;given\; Question\;:\;\:}}}}}

  • Total surface area of cuboid = 1078cm²

As we know that,

{\underline{\boxed{\sf{\purple{Total\;Surface\;Area\;of\;cuboid = 2(lb + bh + hl)}}}}}

\sf {\underline{\red{Put\;the\;givEn\;values:}}}

:\implies\sf 1078 = 2(3x \times 2x + 2x \times x + x \times 3x)\\\\ :\implies\sf 1078 = 2(6x^2 + 2x^2 + 3x^2)\\\\ :\implies\sf 1078 = 2(11x^2)\\\\ :\implies\sf 1078 = 22x^2\\\\ :\implies\sf x^2 = \cancel{ \dfrac{1078}{22}}\\\\ :\implies\sf x^2 = 49

\sf {\underline{\red{Taking\;sqrt\;both\;sides:}}}

:\implies\sf \sqrt{x^2} = \sqrt{49}\\\\:\implies{\underline{\boxed{\sf{\blue{x = 7\;cm}}}}}\;\bigstar

Now,

Put the value of x in -

  • Length of cuboid (3x) = 3 × 7 = 21cm

  • Breadth of cuboid (2x) = 2 × 7 = 14cm

  • Heigth of cuboid (x) = 7 = 7cm

━━━━━━━━━━━━━━━

✇ Now, We have to find Volume of cuboid -

As we know that,

{\underline{\boxed{\sf{\purple{Volume\;of\;cuboid = l \times b \times h}}}}}

\sf {\underline{\red{Put\;the\;givEn\;values:}}}

:\implies\sf Volume = 21 \times 14 \times 7\\\\ :\implies{\underline{\boxed{\sf{\blue{Volume = 2058\;cm^3}}}}}\;\bigstar

\sf \underline{\therefore\;Volume\;of\;cuboid\;is\;2058\;cm^2}

━━━━━━━━━━━━━━━

Answered by Anonymous
46

Given :

Dimensions of a cuboid are in the ratio of 3:2:1

And total surface area of cuboid is 1078 cm²

To Find :

Volume of the cuboid

Solution :

Let the length ,breadth and height of the cuboid be 3x , 2x and x .

We know that

Surface area of a cuboid=2(lb+bh+hl)

\sf1078=2(3x\times2x+2x\times\:x+x\times3x)

\sf1078=2(6x^2+2x^2+3x^2)

\sf1078=2\times11x^2

\sf\:x^2=\dfrac{1078}{22}

\sf\:x=\sqrt{49}

\sf\:x=7cm

Thus, Dimensions of cubiod

  • Length = 3x= 21cm
  • Breadth = 2x = 14cm
  • Height =x=7cm

We have to find the volume of cuboid

\bf{Volume\:of\:cubiod=l\times\:b\times\:h}

\sf\:Volume=21\times14\times7

\sf\:Volume=147\times14

\sf\:Volume=2058cm^3

Therefore, Volume of the cuboid is 2058 cm³.

Similar questions