Math, asked by umamutha12358, 18 days ago

The dimensions of a cuboid shaped overhead tank are 24m × 10m × 6m. If the full tank is being drained with a pipe pouring 100 L water per second, then how much time will it take to fill the tank?​

Answers

Answered by sg140097
14

Answer:

The dimensions of a cuboid shaped overhead tank are 24m 10m 6m. If the full tank is being drained with a pipe pouring 100 L per second. 14,400 sec / (60 × 60) = 4 hours. Therfore, 4 hours of time is required to take to empty the tank.

Answered by Badboy330
199

\rm\dag\large\underline{Question: }

The dimensions of a cuboid shaped overhead tank are 24m × 10m × 6m. If the full tank is being drained with a pipe pouring 100 L water per second, then how much time will it take to fill the tank ?

\rm\dag\large\underline{Given: }

Cuboid dimension .

Length = 24 m.

Breadth = 10 m.

Height = 6 m.

\rm\dag\large\underline{To\: find: }

Time taken to fill the tank.

\rm\dag\large\underline{Answer: }

\rm\large \red{ 4 \: hours \: .}

\rm\dag\large\underline{Soluation: }

Volume of cuboid

\rm\bf \mapsto \:  \:  \large{l \:  \times \: b \: \times \: h  } \\

\rm\rightarrow\large{ \: 24 \:  \times  \: 10 \: \times  6}

\rm\rightarrow\large{ \:1440 \:  {m}^{3}  }

\rm\large \pink{ {1 \: m}^{3}  \:  = 1000 \: L }

\rm\large{ {1400 \: m}^{3}  \:  = x }

\rm\large {x =  \:  \frac{1000 \:  \times  \: 1400}{l}  } \\  \\  \rm \large \rightarrow \: { \: x \:  =  \: 1440000 \:  \:L }

\rm\large \bf{   100 \: L \rightarrow1 \: sec }

\rm\large { 1440000 \: L \:  \mapsto \: x }

\rm\large {  \: x \:  =  \:  \frac{1 \:  \times  \: 1440000}{100} \:  } \: \\ \\ \rm\large = \: 14400 \: second. \\ \\

\rm\large \pink {So, } Time \: taken\: to \:  fill  \: the \:  tank \:   \\    =  \rm \bf 14400 \: second \: \:  =  \: 240 \: min \:  \\   \rm \bf \:  = 4 \: hours \: .

Similar questions