Math, asked by tarefabano13gmailcom, 5 months ago

The dimensions of a cuboidal container are 12cm x 10 cm x 8 cm. How many bottles of syrup can be poured into the container if each bottle contains 20 cm^3 of syrup?​​

Answers

Answered by christianbautistaram
0

Answer:

960cm

Step-by-step explanation:

12x10=120x 8=960cm

Answered by AshnoorpreetKaur
2

\:\:\:\dag\:{\underline{\underline{\mathfrak{\red{Given :-}}}}} \\

  •  \sf{Length = 12cm}

  • \sf{Breadth = 10cm}

  • \sf{Height = 8cm}

  • \sf{Each \:bottle\: contains \:20\: cm^3\: of \:syrup}

\\

\:\:\:\dag\:{\underline{\underline{\mathfrak{\orange{To\:Find:-}}}}} \\

  •  \rm{Number \:of\:syrup\:can \:be \:poured\: into\: the\: container \:if \:each\: bottle \:contains \:20 cm^3 \:of \:syrup}

\\

\:\:\:\dag\:{\underline{\underline{\mathfrak{\blue{Solution:-}}}}} \\

\:\sf\purple{V. \: of \: container \: (v_{1}) = lbh}

\sf{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=12\times10\times8\:cm^3}

\:\sf\purple{V. \: of \: bottles \: (v_{2}) = 20cm^3 \:(Given)}

\bigstar\:\:\sf{No.\:of\: bottles= \dfrac{v_{1}}{v_{2}}}

\:\:\::\implies\:\:\sf{\dfrac{12\times10\times8}{20}}

\:\:\::\implies\:\:{\underline{\boxed{\mathbf{\pink{48}}}}}

Similar questions