Math, asked by vidiarya2006, 10 months ago

The dimensions of a cuboud are in a ratio 3:2:2 and the lateral surface area of the cuboid is 200m². The outer surface of the cuboud is painted with enamel at the rate of ₹10 per m². Find the total cost of painting the outer surface of the cuboid.

Answers

Answered by Anonymous
3

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{The \ total \ cost \ of \ painting \ outer}

\sf{surface \ area \ of \ cuboid \ is \ Rs \ 3200}

\sf\orange{Given:}

\sf{\implies{The \ dimensions \ of \ a \ cuboid \ are}}

\sf{in \ ratio \ of \ 3:2:2}

\sf{\implies{Latera \ surface \ area \ of \ cuboid=200 \ cm^{2}}}

\sf{\implies{The \ outer \ surface \ is \ painted \ at \ rate \ of}}

\sf{Rs \ 10 \ per \ m^{2}}

\sf\pink{To \ find:}

\sf{Cost \ of \ painting \ outer \ surface \ of \ the}

\sf{cuboid.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ dimensions \ of \ a \ cuboid \ are \ in}

\sf{a \ ratio \ 3:2:2}

\sf{Let \ common \ multiple \ be \ x.}

\sf{\therefore{Length(l)=3x}}

\sf{\therefore{Breadth(b)=2x}}

\sf{\therefore{Height(h)=2x}}

\sf{Lateral \ surface \ area \ of \ cuboid=2(l+b)h}

\sf{...formula}

\sf{\therefore{200=2(3x+2x)2x}}

\sf{\therefore{5x\times \ 2x=\frac{200}{2}}}

\sf{10x^{2}=100}

\sf{x^{2}=10}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{x=\sqrt10}

\sf{\therefore{Length(l)=3\sqrt10}}

\sf{\therefore{Breadth(b)=2\sqrt10}}

\sf{\therefore{Height(h)=2\sqrt10}}

\sf{Outer \ surface \ area=Total \ surface \ area}

\sf{Total \ surface \ area \ of \ cuboid=2(lb+bh+hl)}

\sf{...formula}

\sf{\implies{2(3\sqrt10\times2\sqrt10+2\sqrt10\times2\sqrt10+3\sqrt10\times2\sqrt10)}}

\sf{\implies{2(60+40+60)}}

\sf{\implies{2\times160}}

\sf{\implies{320 \ cm^{2}}}

\sf{Rate \ of \ painting \ is \ Rs \ 10 \ per \ m^{2}}

\sf{Cost \ of \ painting \ 320 \ m^{2}=320\times10}

\sf{\therefore{Cost \ of \ painting=Rs \ 3200}}

\sf\purple{\tt{\therefore{The \ total \ cost \ of \ painting \ outer}}}

\sf\purple{\tt{surface \ area \ of \ cuboid \ is \ Rs \ 3200}}

Similar questions