Math, asked by soham156, 2 months ago

The dimensions of a rectangle ABCD are 51cmx25cm.A trapezium with its

parallel sides QC and PD in the ratio 9:8 is cut off from the rectangle. If the area of

the trapezium PQCD is 5/6 th part of the rectangle .Find the length of QC and PD.​

Answers

Answered by XxItzAnvayaXx
7

FINAL ANSWER:-

QC= 45 cm

PD=40cm

GIVEN:-

  • dimensions of a rectangle ABCD are  

length\:AB,DC\:\:(l) =51cm  

breadth\:AD,BC\:(b)=25cm  

  • dimensions of a trapezium PQCB are

parallel \:side\:QC\:(p1)=9x  

parallel \:side\:PB\:(p1)=8x

height\:BC \:(h)=25cm

  • area of the trapezium PQCD is  \frac{5}{6} ^{th}part of the rectangle

TO FIND:-

Find the length of QC(9x) and PD(8x)

FORMULAS USED:-

  • area\:of\:trapezium =\frac{1}{2} *(p1+p2)*h
  • area\:of\:rectangle=l*b

SOLUTION:-

according to question it is given that area of the trapezium PQCD is 5/6 th part of the rectangle

so

area\:of\:trapezium=\frac{5}{6} *area\:of\:rectangle

\frac{1}{2} *(p1+p2)*h=\frac{5}{6} *l*b  

\frac{1}{2} *(PB+QC)*BC=\frac{5}{6} *AB*BC

∵ put values in equation

\frac{1}{2} *(9x+8x)*25=\frac{5}{6} *51*25

\frac{1}{2} *17x*25=\frac{5}{6} *51*25\\

\frac{ 42 5x }{2} =\frac{6375}{6}

x=\frac{6375*2}{6*425} [∵ by cross multiplication]

x=5

∴ length of QC and PD

  • QC ⇒ 9x ⇒ 9×5 ⇒ 45 cm
  • PD ⇒ 8x ⇒  8×5 ⇒ 40cm

=================================================================

Attachments:
Answered by joy1990
0

maihununknown ne sahi answerdiya hai use brainlist bana do

Similar questions