Math, asked by shreya0714, 9 months ago

the dimensions of metallic cuboid are 44cm ×42cm×21 cm it is molten and recast into a sphere find the surface area of the sphere​

Answers

Answered by Ataraxia
37

SOLUTION :-

Given,

Length of cuboid = 44 cm

Breadth of cuboid = 42 cm

Height of cuboid = 21 cm

According to the question,

Volume of cuboid = Volume of sphere

\longrightarrow \quad \sf lbh = \dfrac{4}{3}\pi r^3  \\\\\longrightarrow\quad  44\times42\times 21 = \dfrac{4}{3}\times \dfrac{22}{7}\times r^3 \\\\\longrightarrow \quad r^3=44\times 42\times 21 \times \dfrac{3}{4}\times \dfrac{7}{22} \\\\\longrightarrow \quad r^3=21\times 21 \times 21  \\\\\longrightarrow \quad\bf  r = 21

Radius of the sphere = 21 cm

Surface area of the sphere

          = \sf 4\pi r^2\\\\= 4 \times \dfrac{22}{7}\times 21 \times 21 \\\\= 4 \times 22 \times 3 \times 21 \\\\= \bf 5544 \ cm^2

Answered by BrainlyCosmos
219

\huge\fcolorbox{red}{red}{AɴSᴡᴇR}

THE SURFACE AREA OF THE SPHERE IS 5544 cm².

Step-by-step explanation

\huge\underline{\overline{\bold{\textsf{GIVEN}}}}

Dimensions = 44 cm × 42 cm × 21 cm

l = 44 cm

b = 42 cm

h = 21 cm

Cuboid was Melted into = Sphere

\bigstar \: \boxed{\sf{\color{lime}{Volume \: of \: cuboid = l \times b \times h}}}★

\sf{\longrightarrow} \: 44 \times 42 \times 21

\sf{\longrightarrow} \: 1848 \times 21

\sf{\longrightarrow} \: 38808 \: {cm}^{3}

Volume of the cuboid = 38808 cm³.

____________________________

\bigstar \: \boxed{\sf{\color{purple}{Volume \: of \: sphere= \frac{4}{3}\pi{r}^{3}}}}★

ATQ Volume of the sphere = Volume of the cuboid

\sf{\implies} \: \dfrac{4}{3} \times \dfrac{22}{7} \times {(r)}^{3} = 38808

\sf{\implies} \: \dfrac{88}{21}\times {(r)}^{3} = 38808

\sf{\implies} \: 88r^{3} = 38808 \times 21

\sf{\implies} \: 88r^{3} = 814968

\sf{\implies} \: r^{3} = {\dfrac{814968}{88}}

\sf{\implies} \: r^{3} = 9261

\sf{\implies} \: r = \sqrt[3]{9261}

\sf{\implies} \: r = 21

Radius of the sphere = 21 cm

____________________________

\bigstar \: \boxed{\sf{\color{purple}{Surface \: area \: of \: sphere =4\pi{r}^{2}}}}★

\sf{\longrightarrow} \: 4 \times \dfrac{22}{7} \times {(21)}^{2}

\sf{\longrightarrow} \: 4 \times \dfrac{22}{7} \times 21 \times

\sf{\longrightarrow} \: 4 \times 22\times 21 \times 3

\sf{\longrightarrow} \:88\times63

\sf{\longrightarrow} \: 5544 \: {cm}^{2}

Therefore, the surface area of the sphere is 5544 cm².

Similar questions