Math, asked by mrkhan75, 1 month ago

The dimensions of the a metallic cuboidal box are 100cm × 80cm × 64 cm . It is melted and recast into a cube . Find the surface area of the cube

Answers

Answered by Clαrissα
16

Given :

  • Dimensions of a metallic cuboidal box is 100 cm × 80 cm × 64 cm.
  • It is melted and recasted into a cube.

To Find :

  • The surface area of the cube.

Solution :

Here, dimensions of a metallic cuboidal box are -

  • Length = 100 cm
  • Breadth = 80 cm
  • Height = 64 cm

Let the side of the cuboid be a,

We know,

  • Volume of cuboid = l × b × h

Substituting values,

 \implies \:  \:  \tt \: a = l \times b \times h \\ \implies \tt \: a = 100 \times 80 \times 64 \: cm  \\  \implies \bf \: 512000

 \implies \tt \:  \sqrt[3]{512000} \\  \implies \bf \: 80 \: cm

  • So, the side of the cuboid = 80 cm.

A.T.Q :

 \star Surface area of cube = 6a²

Plugging the values,

 \implies \tt \: 6 \times  {80}^{2} \\  \implies \tt 6 \times 6400  \\  \implies \underline{ \boxed{ \bf{38400  \: {cm}^{2} }}}

Therefore,

  • The surface area of cube is 38400 cm².

 \large \underline{ \boxed{ \purple{ \tt{Surface \: area_{(Cube)} = \pmb{ 38400 \: cm^2}}}}}

Answered by Anonymous
60

Answer:

\underline{\underline{\bigstar{\textbf{\textsf{\: Given\::-}}}}}

  • ➽ The dimensions of the a metallic cuboidal box are 100cm × 80cm × 64 cm .
  • ➽ It is melted and recast into a cube .

\begin{gathered}\end{gathered}

\underline{\underline{\bigstar{\textbf{\textsf{\: To Find\::-}}}}}

  • ➽ The surface area of the cube

\begin{gathered}\end{gathered}

\underline{\underline{\bigstar{\textbf{\textsf{\: Concept\::-}}}}}

  • ➽ Here the concept of Volume of Cuboid has been used. We are given that the dimensions of the a metallic cuboidal box are 100cm × 80cm × 64 cm. Firstly we will find the side of cuboidal box and then after finding side we will find the volume of cubical box by using the formula os Volume of Cube.

\begin{gathered}\end{gathered}

\underline{\underline{\bigstar{\textbf{\textsf{\: Using Formula\::-}}}}}

\dag{\underline{\boxed{\pmb{\sf{\red{Volume \:  of  \: Cuboid  = l \times b \times h}}}}}}

\dag{\underline{\boxed{\pmb{\sf{\red{Surface \:  area \:  of \:  Cube=6{a}^{2}}}}}}}

Where

  • ➽ L = Lenght
  • ➽ B = Breadth
  • ➽ H = Height
  • ➽ A = Side

\begin{gathered}\end{gathered}

\underline{\underline{\bigstar{\textbf{\textsf{\: Solution\::-}}}}}

Here, Dimensions of a metallic cuboid :

  • ➽ Lenght = 100 cm
  • ➽ Breadth = 80 cm
  • ➽ Height = 64 cm

\begin{gathered}\end{gathered}

Now, Let the side of cuboid be a.

 \quad{: \implies{\sf{Volume \:  of  \: Cuboid  = l \times b \times h}}}

  • Substuting the values

 \quad{ : \implies{\sf{ a= 100 \times80 \times 64}}}

\quad{ : \implies{\sf{ a=512000 \:  {cm}^{3} }}}

\quad{ : \implies{\sf{ a=  \sqrt[3]{51200}  }}}

\quad{ : \implies{\sf{ a=  \sqrt[3]{80 \times 80 \times 80}  }}}

\quad{ : \implies{\sf{ a= 80 }}}

{\dag{\underline{\boxed{\pmb{\sf{\red{ a= 80 \: cm }}}}}}}

The side of Cuboid is 80 cm.

\begin{gathered}\end{gathered}

Now,Finding the surface area of Cube.

\quad{: \implies{\sf{Surface \:  area \:  of \:  Cube=6{a}^{2}}}}

  • Substuting the values

\quad{: \implies{\sf{Surface \:  area \:  of \:  Cube=6{(80)}^{2}}}}

\quad{: \implies{\sf{Surface \:  area \:  of \:  Cube=6{(80 \times 8)}}}}

\quad{: \implies{\sf{Surface \:  area \:  of \:  Cube=6{(6400)}}}}

\quad{: \implies{\sf{Surface \:  area \:  of \:  Cube=6 \times 6400}}}

\quad{: \implies{\sf{Surface \:  area \:  of \:  Cube=38400 \:  {cm}^{2} }}}

\dag{\underline{\boxed{\pmb{\sf{\red{Surface \:  area \:  of \:  Cube=38400 \:  {cm}^{2}}}}}}}

Surface area of Cube is 38400 cm².

\begin{gathered}\end{gathered}

\underline{\underline{\bigstar{\textbf{\textsf{\:Learn More\::-}}}}}

\;\small\sf{\leadsto\;\;\;TSA\;of\;Cylinder\;=\;2\pi rh\;+\;2\pi r^{2}}

\;\small\sf{\leadsto\;\;\;CSA\;of\;Cylinder\;=\;2\pi rh}

\;\small\sf{\leadsto\;\;\;TSA\;of\;Cone\;=\;\pi rL\;+\;\pi r^{2}}

\;\small\sf{\leadsto\;\;\;CSA\;of\;Cone\;=\;\pi rL}

\;\small\sf{\leadsto\;\;\;Volume\;of\;Cube\;=\;(Side)^{3}}

\;\small\sf{\leadsto\;\;\;Volume\;of\;Cuboid\;=\;Length\;\times\;Breadth\;\times\;Height}

\;\small\sf{\leadsto\;\;\;Volume\;of\;Cone\;=\;\dfrac{1}{3}\;\times\;\pi r^{2}h}

\;\small\sf{\leadsto\;\;\;Volume\;of\;Hemisphere\;=\;\dfrac{2}{3}\;\times\;\pi r^{3}}

\;\small\sf{\leadsto\;\;\;Volume\;of\;Sphere\;=\;\dfrac{4}{3}\;\times\;\pi r^{3}}

\;\small\sf{\leadsto\;\;\;Volume\;of\;Hollow\;Sphere\;=\;\pi (R^{2}\;-\;r^{2})h}


Clαrissα: Great! ◉‿◉
Similar questions