Math, asked by kaurpreet62566, 6 months ago

the discriminant of the following
2
2x {}^{2}  + 5 - 6


1

48

-38

49​

Answers

Answered by prince5132
43

GIVEN :-

  • quadratic equation = 2x² + 5x - 6 .

TO FIND :-

  • The discriminant of the quadratic equation.

SOLUTION :-

As we know that the discriminant of any quadratic equation is given by,

 \\  :   \implies \displaystyle \sf \: Discriminant = b ^{2}  - 4ac \\  \\

  • a = 2.
  • b = 5.
  • c = -6.

 \\  \\   :   \implies \displaystyle \sf \: Discriminant =5 ^{2}  - 4 \times 2 \times ( - 6) \\  \\  \\

  :   \implies \displaystyle \sf \: Discriminant =25 - 8 \times ( - 6) \\  \\  \\

  :   \implies \displaystyle \sf \: Discriminant =25 - ( - 48) \\  \\  \\

  :   \implies \displaystyle \sf \: Discriminant =25 + 48 \\  \\  \\

  :   \implies \underline{ \boxed{ \displaystyle \sf \: Discriminant =73}} \\  \\

Now let's find the roots of the given quadratic equation by using the quadratic formula,

 \\  \\   :   \implies \displaystyle \sf \: x =  \frac{ - b \pm \sqrt{b ^{2} - 4ac } }{2a}  \\  \\

  • a = 2.
  • b = 5.
  • c = -6.

 \\  \\  :   \implies \displaystyle \sf \: x =   \frac{ - 5 \pm \sqrt{5 ^{2} - 4 \times 2 \times ( - 6) } }{2 \times 2}  \\  \\  \\

 :   \implies \displaystyle \sf \: x =   \frac{ - 5 \pm \sqrt{25 - ( - 48)} }{4}  \\  \\  \\

 :   \implies \displaystyle \sf \: x =   \frac{ - 5 \pm \sqrt{25 + 48} }{4}  \\  \\  \\

 :   \implies \displaystyle \sf \: x =   \frac{ - 5 \pm \sqrt{73}  }{4}  \\  \\  \\

 :   \implies \underline{ \boxed{ \displaystyle \sf \: x =   \frac{ - 5 +  \sqrt{73} }{4} }} \\  \\

 :   \implies  \underline{ \boxed{\displaystyle \sf \: x =   \frac{ - 5 -  \sqrt{73} }{4} }}

Answered by Anonymous
130

Given :

  • A = 2

  • B = 5

  • C = - 6

To Find :

  • what is the discriminant ?

Solution :

Concept :

  • The Discriminant of the quadratic polynomial. It is zero if and only if the polynomial has a double root, and is positive if and only if the polynomial has two real roots.

 :  \sf \implies  \:  \:  \: \: D  =  {b}^{2}   - 4 a c

Substitute all values :

 :  \sf \implies  \:  \:  \: \: D  =  {5}^{2}   - 4 \times 2 \times  - 6\\  \\   \\  :  \sf \implies  \:  \:  \: \: D  = 25 + 48 \\  \\ \\   :  \sf \implies  \:  \:  \: \: D  = 73

Similar questions