Physics, asked by ajay4537, 8 months ago

the displacement of a partial starting from rest (at t=0)is given by S=6t²-t³ the time in seconds at which the particle will attain zero velocity again is ​

Answers

Answered by InfiniteSoul
5

\sf{\underline{\boxed{\large{\blue{\mathsf{Solution}}}}}}

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • \sf{\bold{ S = 6t^2 - t^3 }}

_______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • Time in which the particle will attain zero velocity .

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

⠀⠀

\sf{\red{\boxed{\bold{V = \dfrac{d_s}{d_t}}}}}

⠀⠀⠀⠀

: \sf\implies \: {\bold { V = \dfrac{d ( 6t^2 - t^3 )} { dt } }}

⠀⠀

: \sf\implies \: {\bold { V = \dfrac{ 6dt^2 - dt^3 )} { dt } }}

⠀⠀

: \sf\implies \: {\bold { V = \dfrac{6dt^2} { dt } - \dfrac{ dt^3 }{ dt }}}

⠀⠀

: \sf\implies \: {\bold { V = 6d^{1-1}t^{2-1} - d^{1-1}t^{3-1}}}

⠀⠀

: \sf\implies \: {\bold { V = 6t - t^2 }}

⠀⠀

  • Here in question it is asked that when velocity will be zero , therefore V = 0

: \sf\implies \: {\bold { 0 = 6t - t^2 }}

⠀⠀⠀⠀

: \sf\implies \: {\bold { 0 = t ( 6 - t ) }}

⠀⠀⠀⠀

: \sf\implies \: {\bold { ( t ) ( 6 - t ) = 0 }}

⠀⠀

\begin{tabular}{|c|c|}\cline{1-2}\sf t = 0  &\sf 6 - t = 0 \\\cline{1-2}\sf t = 0 &\sf t = 6 - 0 \\\cline{1-2}\sf t = 0 &\sf t = 6 \\\cline{1-2}\end{tabular}

⠀⠀⠀⠀

: \sf\implies \: {\bold { t = 6sec \: or \: 1sec }}

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • Time in which the particle will attain zero velocity is 0 or 6 seconds .
  • In the question 0 velocity is at 0 seconds ( given )
  • Therefore the answer is 6 seconds .
Similar questions