Physics, asked by Shaiza2220, 1 year ago

The displacement of a particle in shm varies with time as

Answers

Answered by sumith89
0

Answer:

A)

A) displacement

A) displacement y=4(cosπt+sinπt)

A) displacement y=4(cosπt+sinπt)

A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπt

A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLet

A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 π

A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 πR sinΦ=4

A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 πR sinΦ=4y=R sinΦcosπt+R cosΦsinπt

A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 πR sinΦ=4y=R sinΦcosπt+R cosΦsinπty=R sin( πt+Φ)

A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 πR sinΦ=4y=R sinΦcosπt+R cosΦsinπty=R sin( πt+Φ)R is the amplitude

A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 πR sinΦ=4y=R sinΦcosπt+R cosΦsinπty=R sin( πt+Φ)R is the amplitudesquaring and adding the terms

A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 πR sinΦ=4y=R sinΦcosπt+R cosΦsinπty=R sin( πt+Φ)R is the amplitudesquaring and adding the termsR=root of(4^2+4^2)=4root2 units

A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 πR sinΦ=4y=R sinΦcosπt+R cosΦsinπty=R sin( πt+Φ)R is the amplitudesquaring and adding the termsR=root of(4^2+4^2)=4root2 unitsTherefore amplitude=4 root 2 units

Similar questions