The displacement of a particle in shm varies with time as
Answers
Answer:
A)
A) displacement
A) displacement y=4(cosπt+sinπt)
A) displacement y=4(cosπt+sinπt)
A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπt
A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLet
A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 π
A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 πR sinΦ=4
A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 πR sinΦ=4y=R sinΦcosπt+R cosΦsinπt
A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 πR sinΦ=4y=R sinΦcosπt+R cosΦsinπty=R sin( πt+Φ)
A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 πR sinΦ=4y=R sinΦcosπt+R cosΦsinπty=R sin( πt+Φ)R is the amplitude
A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 πR sinΦ=4y=R sinΦcosπt+R cosΦsinπty=R sin( πt+Φ)R is the amplitudesquaring and adding the terms
A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 πR sinΦ=4y=R sinΦcosπt+R cosΦsinπty=R sin( πt+Φ)R is the amplitudesquaring and adding the termsR=root of(4^2+4^2)=4root2 units
A) displacement y=4(cosπt+sinπt) y=4cosπt+4sinπtLetRcos Φ=4 πR sinΦ=4y=R sinΦcosπt+R cosΦsinπty=R sin( πt+Φ)R is the amplitudesquaring and adding the termsR=root of(4^2+4^2)=4root2 unitsTherefore amplitude=4 root 2 units