Physics, asked by Aryatakku, 9 months ago

the displacement 's' of a moving particle at time 't' is given by s=5 + 20t - 2t^2. Find its velocity and acceleration when t = 2​

Answers

Answered by AdorableMe
33

\underline{\underline{\sf{\color{orange}{GIVEN:-}}}}

The displacement 's' of a moving particle at time 't' is given by s = 5 + 20t - 2t².

\underline{\underline{\sf{\color{orange}{TO\ FIND:-}}}}

The velocity and acceleration of the moving particle at t = 2 s.

\underline{\underline{\sf{\color{orange}{SOLUTION:-}}}}

\sf{s=5+20t-2t^2}

\sf{Velocity,\ v=\dfrac{ds}{dt} }

\sf{\longmapsto v=\dfrac{d(5+20t-2t^2)}{dt} }

\sf{\longmapsto v=0+20+(2\times-2t)}

\sf{\longmapsto v=20-4t}            . . . (i)

_______________________

Using equation (i) :-

\sf{\longmapsto a=\dfrac{dv}{dt} }

\sf{\longmapsto a=\dfrac{d(20-4t)}{dt} }

\sf{\longmapsto a=0-4}

\sf{\longmapsto a=-4\ m/s^2}

_______________________

Putting t = 2,

\sf{\longmapsto v=20-4(2)}

\sf{\longmapsto v=20-8}

\sf{\longmapsto v=12\ m/s}

Therefore,

◙ The velocity of the moving particle at t = 2s is 12 m/s.

◙ The acceleration of the moving particle at t = 2s = -4 m/s².

Answered by Cosmique
21

Given :

  • Displacement of a moving particle at time 't' is given by, s (t) = 5 + 20 t - 2 t²

To find :

  • Velocity and acceleration of particle when t = 2

Knowledge required :

  • Formula to calculate instantaneous velocity

\red{\bigstar\;\;\;}\boxed{\sf{v=\dfrac{d\;s}{d\;t}}}

[ Where the quantity v (instantaneous velocity) is the differencial coefficient of x with respect to t and is denoted by (ds/dt) ]

  • Formula to calculate instantaneous Acceleration

\red{\bigstar\;\;\;}\boxed{\sf{a=\dfrac{d\;v}{d\;t}}}

[ Where the quantity a (instantaneous acceleration) is the differential coefficient of v with respect to t and is denoted by (dv/dt) ]

Solution :

Using formula to calculate instantaneous velocity

\implies \sf{v=\dfrac{d\;s}{d\;t}}

\implies \sf{v=\dfrac{d\;( -2\;t^2 + 20 \;t + 5)}{d\;t}}

\implies \underline{\underline{\red{\sf{v=-4\;t + 20 }}}}

Using formula to calculate instantaneous acceleration

\implies\sf{a=\dfrac{d\;v}{d\;t}}

\implies\sf{a=\dfrac{d\;(-4\;t+20)}{d\;t}}

\implies\underline{\underline{\red{\sf{a=-4}}}}

So,

velocity at t = 2 would be

\implies\sf{v (t)=-4\;t+20}

\implies\sf{v (2)=-4\;\times 2+20}

\implies\underline{\underline{\red{\sf{v (2)=12}}}}

  • velocity of particle at t = 2  would be 12.

and, acceelation is a constant as , a = -4

therefore,

  • Acceleration of particle at t = 2 sec would be -4.

Similar questions