Physics, asked by achintyaparamanik224, 1 year ago

The displacement x of a particle of mass m moving in a straight line varies with time t as k=t^3/2 under the action of a force F where k is constant. Calculate the work done by the force

Answers

Answered by nirman95
25

Answer:

Given:

Displacement varies as

x = k {t}^{ \frac{3}{2} }

To find:

Work done by force

Concept:

As per Work-Energy Theorem, we can say that work done is the change in Kinetic energy.

Work = ∆KE

Calculation:

x = k {t}^{ \frac{3}{2} }

 =  > v =  \frac{dx}{dt}  = k \frac{d {(t)}^{ \frac{3}{2} } }{dt}  \\

 =  > v =  \frac{3}{2} k \sqrt{t}

Now ,

kinetic \: energy =  \frac{1}{2} m {v}^{2}

 =  > ke =  \frac{1}{2} m( \frac{9}{4}  {k}^{2} t) \\

 =  > ke =  \frac{9}{8}  {k}^{2} t

So final answer is :

 \boxed{ work \: done=  \frac{9}{8}  {k}^{2} t}

Answered by Anonymous
33

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

\small{\underline{\blue{\sf{Given :}}}}

• x = kt^(3/2)

\rule{200}{1}

\small{\underline{\green{\sf{Solution :}}}}

\large \star {\boxed{\sf{v \: = \: \dfrac{dx}{dt}}}} \\ \\ \implies {\sf{v \: = \: \dfrac{d(kt^{\frac{3}{2}})}{dt}}} \\ \\ \implies {\sf{v \: = \: \dfrac{3}{2} k \sqrt{t}}} \\ \\ \large \star {\boxed{\sf{K.E \: = \: \dfrac{1}{2} mv^2}}} \\ \\ \implies {\sf{K.E \: = \: \dfrac{1}{2} m \bigg( \dfrac{3}{2} k \sqrt{t} \bigg)^2}} \\ \\ \implies {\sf{K.E \: = \: \dfrac{1}{2} m \bigg( \dfrac{9}{4} k^2 t \bigg)}} \\ \\ \implies {\sf{K.E \: = \: \dfrac{9}{8}k^2 t }} \\ \\ \implies {\boxed{\sf{Work \: Done \: = \: K.E \: = \: \dfrac{9}{8}k^2 t}}}

Similar questions