Physics, asked by sWeeTLipS, 4 months ago

The displacements of two sinusoidal waves propagating through a string are given by the following equations:-
y_{1} = 4 \sin(20x - 30t)
y_{2} = 4 \sin(25x - 40t)
where x and y are in centimeter and t is in second.
a) calculate the phase difference between these two waves at the points x= 5 cm and t = 2s.
b) when these two waves interfere , what are the maximum and minimum values of the intensity?​

Answers

Answered by Anonymous
23

ɢɪᴠᴇɴ :-

y_{1} = 4 \sin(20x - 30t)

ᴀɴᴅ,

y_{2} = 4 \sin(25x - 40t)

➻ a) Tᴏ ғɪɴᴅ ᴘʜᴀsᴇ ᴅɪғғᴇʀᴇɴᴄᴇ ᴡʜᴇɴ x=5cm and t= 2 s:

 ➙ y_{1} = 4 \sin(20 \times 5 - 30 \times 2)

 = 4 \sin(100 - 60)

 = 4 \sin40

➙ y_{2} = 4 \sin(25 \times 5 - 40 \times 2)

 = 4 \sin(125 - 80)

 = 4 \sin45

➪Pʜᴀsᴇ ᴅɪғғᴇʀᴇɴᴄᴇ ɪs 5 ʀᴀᴅɪᴀɴ ʙᴇᴄᴀᴜsᴇ

= |45-40| = 5 ʀᴀᴅɪᴀɴ .

b) Tᴏ ғɪɴᴅ ᴛʜᴇ ᴍᴀxɪᴍᴜᴍ ᴀɴᴅ ᴍɪɴɪᴍᴜᴍ ᴠᴀʟᴜᴇs ᴏғ ᴛʜᴇ ɪɴᴛᴇɴsɪᴛʏ :

➪ Aᴍᴘʟɪᴛᴜᴅᴇs ᴏғ ᴛʜᴇ ᴛᴡᴏ ᴡᴀᴠᴇs ᴀʀᴇ :-

 A_{1} = 4cm \: and \: A_{2}  = 4cm

  I_{max} =  {( A_{1} + A_{2}) }^{2}

I_{max} = (4 + 4 {)}^{2}

 ➪ I_{max} = 64

➙ ᴡʜᴇɴ ᴛʜᴇ ᴘʜᴀsᴇ ᴅɪғғᴇʀᴇɴᴄᴇ ɪs ᴢᴇʀᴏ ᴀɴᴅ -

 I_{min} =  {( A_{1}   -  A_{2}) }^{2}

I_{min}  = (4 - 4 {)}^{2}

 ➙ \:  I_{min}  = 0

ᴡʜᴇɴ ᴛʜᴇ ᴘʜᴀsᴇ ᴅɪғғᴇʀᴇɴᴄᴇ ɪs :-\pi

Hᴏᴘᴇ ɪᴛ ʜᴇʟᴘs ᴜ !❤︎

Similar questions