Physics, asked by srinukatkuri1, 8 months ago

The distance between (1,2)and (-2,k)is 5 find the value of k​

Answers

Answered by BrainlyIAS
2

Question : The distance between (1,2)and (-2,k)is 5 find the value of k​

Formula used : \sqrt{(x_2 - x_1)^{2}+(\sqrt{y_2 -y_1} )^{2}}\\\\ = 5

Answer:    k = 6

Explanation:

points, x_1=1,y_1=2,x_2=-2,y_2=k

Now substitute these points in the formula,

\sqrt{(x_2 - x_1)^{2}+(\sqrt{y_2 -y_1} )^{2}}=5\\\\\sqrt{(-2 - 1)^{2}+(k-2 )^{2}}=5\\\\=>\sqrt{(-3)^{2}+(k-2)^{2}}=5\\\\ =>(-3)^{2}+(k-2)^{2}=25\\\\=>(k-2)^{2}=25-9\\\\=>(k-2)^{2}=16\\\\=>(k-2)^{2}=4^{2}\\\\=> k-2=4\\\\=>k=6

Hope helps u and mark brainliest plz

Answered by Cynefin
32

♚Question:

The distance between (1,2)and (-2,k)is 5 find the value of k

♚Answer:

⇴Let the points be A And B.

Given A and B is 5

By using, Distance formula,

 \large{ \boxed{ \red{ \bold{D  {\tiny{AB}} \:  =  \sqrt{(x2 - x1) {}^{2}  + (y2 - y1) {}^{2} } }}}}

We have, A(1,2) and B(-2,k)

And, Distance between A and B= 5,

Then,

⇢ \large{ \sf{{5 \: =  \sqrt{( - 2 - 1) {}^{2} + (k - 2) {}^{2}  } }}}  \\  \sf{ \green{ \underline{ \underline{ \dag{ \:  \: squaring \: both \: sides}}}}} \\  \\  ⇢ \large{ \sf{ \: 25 =  {( - 2 - 1)}^{2}  + (k - 2) {}^{2} }} \\ ⇢ \large{ \sf{ \: 25 = ( - 3) {}^{2}  + (k - 2) {}^{2}  }} \\ ⇢ \large{ \sf{ \: 25 = 9 + (k - 2) {}^{2} }} \\ ⇢\large{ \sf{  \: 16 = (k - 2) {}^{2} }} \\  ⇢\large{ \sf{ \:  k - 2 =  \pm{4}}} \\  \\  \large{ \bold{ \boxed{ \pink{case  - 1}}}} \\⇢ \large{ \sf{k  - 2=  + 4}} \\ ⇢ \large{ \sf{ \boxed{k = 6}}} \\  \\  \large{ \bold{ \boxed{ \pink{case - 2}}}} \\ ⇢ \large{ \sf{k - 2 =  - 4}} \\ ⇢ \large{ \sf{ \boxed{k =  - 2}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

♚So final answer:

 \huge{ \boxed{ \bold{ \red{k = 6 \: or \:  - 2}}}}

Similar questions