Math, asked by rajyuvi9, 1 year ago

The distance between 2 towns on a national highway is 600 km. A and B start simultaneously from these cities on their bikes towards each other. They meet after 4 hours and if the speed of B is 10 kmph more than A, find their speeds.

Answers

Answered by KhanLuqman
7

Answer:

The speed of bike A = 70 km/hr

and speed of bike B = 80 km/hr

Step-by-step explanation:

The distance is given = 600km

The speed of bike B

= speed of A + 10km/hr

Let the speed of A is Xkm/r

=> speed of B = (10 + X)km/h

Both meet after time = 4 hours

it mean that the total net speed of both the bikes = 600/4 = 150 km/hr

it means that

Xkm/hr + (X + 10)km/hr = 150km/hr

or X + (X+10) = 150

or 2X = 150 - 10

=> X = 140/2 = 70

HENCE the speed of bike A = 70km/hr

and bike B = 70+10 = 80km/hr

Answered by pinkysingh64698
3

hope it will help you...

Attachments:
Similar questions