Math, asked by anandkrishna1900, 6 hours ago

The distance between A(a+b , a-b) and B(b-a , b+a) is

Answers

Answered by sudhanshusingh006z
1

Answer:

AB = √4 ( a^2 - b^2 ) = 2√( a^2 - b^2)

Step-by-step explanation:

Mark me Brainelist

Answered by diwanamrmznu
12

★GIVEN:-

  • A(a+b , a-b)

  • B(b-a , b+a)

★find:-

  • distance between A and B

★solution:-

  • we know that A and B distance formula

 \implies \red{AB} =  \pink{ \sqrt{( x_{1} - x_{2} ) {}^{2}  + ( y_{1} -  y_{2}) {}^{2}   } } \\

where

 \implies \red {x_{1} =a + b }  \:  \:   \:  \: \implies \pink{ y_{1} = a - b } \\  \\   \implies \red{ x_{2} = b - a }  \:  \:  \:  \:  \:  \:  \: \implies \:  \pink{ y_{2} = b + a} \\

now applied two point distance formula

 \implies \:  \sqrt{((a + b) {}^{2} - (a - b) {}^{2}) +(( b - a) {}^{2}  - (b + a) {}^{2})   }  \\

we know that formula of

 \implies \star \pink{(a + b) {}^{2} = a {}^{2}  + b {}^{2} + 2ab   } \\  \\  \implies \star \pink{ (a - b) {}^{2} = a {}^{2}  + b {}^{2}  - 2ab }

 \implies \:   \sqrt{a {}^{2} + b {}^{2} + 2ab - (a {}^{2} + b {}^{2}  - 2ab) + (b {}^{2}  + a {}^{2}   - 2ba) - (b {}^{2} + a {}^{2} + 2ba    }   \\

 \implies \:   \sqrt{a {}^{2} + b {}^{2} + 2ab - a {}^{2}  -  b {}^{2}   +  2ab + b {}^{2}  + a {}^{2}   - 2ba - b {}^{2}  -  a {}^{2}  -  2ba    }   \\  \\  \\  \implies \:  \sqrt{4ab - 4ab}  \\  \\   \implies = 0

answer

The distance between A(a+b , a-b) and B(b-a , b+a) is=

 \implies \pink{0}

=====================================

I hope it helps you

Similar questions