Math, asked by manjulareddy51985, 6 months ago

The distance between A(cosθ, sinθ) and B(−sinθ,cosθ) is​

Answers

Answered by poojacool4455
3

Answer:

ab \:  =  \sqrt{( -  \sin\alpha  -  \cos\alpha) {}^{2}  + ( \cos\alpha   -  \sin \alpha )   {}^{2} }  \\ ab \:  =  \sqrt{ \sin {}^{2}  \alpha +  \cos  {}^{2}  \alpha + 2  \sin\alpha  \cos\alpha \:  +  \cos {}^{2} \alpha +  \sin {}^{2}  \alpha   - 2 \sin\alpha  \cos\alpha     }  \\ since \:  \sin {}^{2} \alpha   +  \cos {}^{2} \alpha  = 1 \\  ab \:  =  \sqrt{1 + 2 \sin \alpha  \cos\alpha + 1 - 2 \sin \alpha  \cos\alpha    }  \\ ab \:   = \sqrt{2} units  \\ thus \: distance \: between \: a \: and \: b \:  \: is \:  \sqrt{2 \: } \:  \: units \:  \:  \:  \: ans

Similar questions