the distance between points (cos thita, - sin thita) and (sin thita, cos thita)
Answers
Answered by
0
Answer:
like picture you can solve the problem
Attachments:
Answered by
1
Answer:
√2
Step-by-step explanation:
(cosθ , - sinθ) (sinθ , cosθ)
Using Distance formula,
√(x₂ - x₁)² + (y₂ - y₁)²
√(sinθ - cosθ)² + (cosθ - (-sinθ))²
√(sinθ - cosθ)² + (cosθ + sinθ)² ∵ {(a + b)² = a² + b² + 2ab}
√[(sin²θ + cos²θ) - 2sinθcosθ + (cos²θ + sin²θ) + 2sinθcosθ]
√(sin²θ + cos²θ) + (cos²θ + sin²θ)
√1 + 1
√2
* {sin²θ + cos²θ = 1}
Attachments:
Similar questions