Math, asked by shivakumar75455, 5 months ago

the distance between points (cosQ,sinQ ) (cos p, sin p)​

Answers

Answered by virangalh
0

Answer:

\sqrt{2-2cos(Q-p)}

Step-by-step explanation:

 (cosQ , sinQ)   and(cosp , sinp)

if the points are (x1,y1)  and (x2,y2) then

Distance between any points =\sqrt{(x1-x2)^2+(y1-y2)^2}

step 1

substitute the points in the theorem

     Distance = \sqrt{(cosQ-cosp)^2+(sinQ-sinp)^2}

step 2

    expand each of complete square

       Distance = \sqrt{(cos^{2}Q-2cosQcosp+cos^{2}p)+( Sin^2Q-2sinQsinp+sin^2p) }

step 3

       use    cos^{2} x+sin^2x=1  and simplify

\sqrt{cos^2Q+sin^2Q+cos^2p+sin^2p - 2cosQcop-2sinQsinp}

cos^2Q+sin^2Q =1   and  cos^2p+sin^2p =1

\sqrt{1+1-2cosQcosp-2sinQsinp}

\sqrt{2-2cosQcosp-2sinQsinp}

step 4

using trigonometry and make a simplification of the expression like

cosQcosp+sinQsinp =Cos(Q-p)

\sqrt{2-2(cosQcosp+sinQsinp)}

\sqrt{2-2cos(Q-p)}

Similar questions