Math, asked by mitkarisujata, 2 months ago

The distance between the parallel lines 6x + 8y + 21 = 0 and 3x + 4y + 7 = 0 is​

Answers

Answered by ankanshampa
1

Answer:

Hope my answer will help you.

Attachments:
Answered by ravi2303kumar
0

Answer:

Distance between the given parallel lines = 0.7  units

Step-by-step explanation:

given, lines 6x + 8y + 21 = 0 and 3x + 4y + 7 = 0 are parallel.

=> their slopes will be equal

consider, 6x+8y+21=0

              => 8y = -6x-21

              => y = \frac{-6}{8}x + \frac{-21}{8}

              => y = \frac{-3}{4}x + \frac{-21}{8}  --------- (1)

similarly,  3x + 4y + 7 = 0

              => 4y = -3x-7

              => y = \frac{-3}{4}x + \frac{-7}{4}  --------- (2)

from (1) and (2) we have the slopes, (co-effecient of x) are equal

ie., m₁ = m₂ = \frac{-3}{4}

=> the 2 lines are parallel

also, c₁ = \frac{-21}{8} and c₂ = \frac{-7}{4}

we know for 2 parallel lines, y=mx+c₁ & y = mx+c₂ , the distance between them is given by the formula,

  d = \frac{| (c_1-c_2)|}{\sqrt{1+m^2} } units

so, here,

d = \frac{| (\frac{-21}{8}) - (\frac{-7}{4})|}{\sqrt{1+(\frac{-3}{4} )^2} } units

   = \frac{| (\frac{-21}{8}) + (\frac{14}{8})|}{\sqrt{1+(\frac{9}{16} )} } units

   = \frac{| \frac{(-21+14)}{8}|}{\sqrt{\frac{16+9}{16} } } units

   = \frac{| \frac{(-7)}{8}|}{\sqrt{\frac{25}{16} } } units

   = \frac{ \frac{(7)}{8}}{\frac{5}{4}  } units

   = \frac{7}{8} * \frac{4}{5} units

   = \frac{7}{2} * \frac{1}{5} units

   = \frac{7}{10}  units

   = 0.7  units

 

Similar questions