Math, asked by kshitijtayade510, 9 months ago

The distance between the point a(0,6)b(0,-2) is

Answers

Answered by Skyllen
0

[HeY Mate]

\huge\bold\red{Answer}

Here,

x_{1} = 0 \: and \: y_{1}  = 6 \\ x_{2}  = 0 \: and \: y_{2}  =  - 2 \\  \\

Solution:

By using DISTANCE FORMULA,

 =  &gt;  | (x_{2}  - x_{1} )  {}^{2} + (y_{2}  - y_{1} ) {}^{2}  |  \\  =  &gt; |   0 + ( - 2 - 6) {}^{2}  |  \\  =  &gt;  | </strong><strong>(</strong><strong>0   - 8</strong><strong>)</strong><strong>^</strong><strong>2</strong><strong> |  \\  =  &gt;  </strong><strong>+</strong><strong>6</strong><strong>4</strong><strong> \\  \\

Hence, Distance between a and b is 8 units.

▪️

▪️

▪️

I Hope It Helps You✌️

Answered by InfiniteSoul
2

{\huge{\bold{\blue{\bigstar{\boxed{\bf{Question}}}}}}}

The distance between the point a(0,6)b(0,-2) is

{\huge{\bold{\blue{\bigstar{\boxed{\bf{Solution}}}}}}}

{\bold{\blue{\boxed{\bf{ Distance\:Formulae  }}}}}

{\bold{\blue{\boxed{\bf\sqrt((x_2-x_1)^2+ (y_2 - y_1)^2)}}}}

  •  x_1 = 0 , x_2 = 0
  •  y_1 = 6 , y_2 = -2

\rightarrow\sqrt(0-0)^2+ (-2 - 6)^2

\rightarrow\sqrt(0)^2+ (-8)^2

\rightarrow\sqrt -8^2

  • square cancel the roots

 8

{\bold{\blue{\boxed{\bf{ Distance= 8}}}}}

____________________❤

THANK YOU ❤

Similar questions