The distance between the point (acos theta + bcos theta , 0) and (0, asin theta - bcos theta) is
Answers
Answer:
Given the point A(cosθ+bsinθ,0),(0,asinθ−bcosθ)
By distance formula
The distance of AB
under root (x2−x1)2+(y2−y1)2
= under root[0−(acosθ+bsinθ)2+(asinθ−bcosθ−0]2= under root a2cos2θ+2abcosθsinθ+a2sin2θ+b2cos2θ−2absinθcosθ
= under root (a2+b2)cos2θ+(a2+b2)sin2θ
= under root a2+b2
[∵cos2θ+sin2θ=1]
Step-by-step explanation:
I HOPE THIS WILL HELP YOU!!!
PLZ FOLLOW ME.
Step-by-step explanation:
The points are (a cos ∅ + b sin ∅, 0) and (0, a sin ∅ - b cos∅)
By distance formula,
√(a cos∅ + b sin ∅ - 0)² + (0-(a sin ∅ - b cos ∅))²
using identity (a±b)² = a² + b² ±2ab,
√ a²cos² ∅ + b²sin² ∅ + 2ab sin∅ cos∅ + b²cos²∅ + a²sin²∅ - 2ab sin∅ cos∅
√ a²cos²∅ + a²sin²∅ + b²cos²∅ + b²sin²∅
√ a²( cos²∅+ sin²∅ ) + b²(cos²∅ + sin²∅)
using identity sin² ∅ + cos²∅ = 1,
√ a² (1) + b² (1)
=> √a²+b²
hope it helps………)