Math, asked by sadularamesh936, 6 months ago

the distance between the points (0, 6 )and (0, - 2 )is​

Answers

Answered by ShírIey
111

\large\boxed{\frak{\purple{Distance = 8 \ units}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━

Given: Let's the given points be A(0,6) & B(0,-2).

To Find: Distance b/w these points.

Explanation:

To find the Distance the formula is given as,

\bf\pink{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 }}

Here,

  • \sf x_1 = 0
  • \sf x_2 = 0
  • \sf y_1 = 6
  • \sf y_2 = -2

\\

Substituting values in the given Formula,

\implies\sf Distance = \sqrt{(0 - 0)^2 + (-2 - 6)^2} \\\\\\\implies\sf Distance = \sqrt{0^2 + (-8)^2} \\\\\\\implies\sf Distance = \sqrt{64} \\\\\\\implies\underline{\boxed{\sf Distance = 8 \ units }}

\therefore The distance between the points (0, 6) and (0, - 2) is 8 units.

Answered by Rubellite
368

\large\bf{\underline{\underline{Answer:}}}

\huge{\boxed{\sf{\red{Distance = 8\:units}}}}

\rule{400}4

\large\bf{\underline{\underline{Explanation:}}}

\large{\boxed{\sf{\pink{formula\:used\:= distance= \sqrt{(x_2 - x_1)^{2}+(y_2 - y_1)^{2}}}}}}

Here, \displaystyle{\sf{(x_1,y_1) = (0,6)\:and\:(x_2,y_2) = (0,-2)}}

Substituting the values, we get,

\displaystyle{\sf{d= \sqrt{(0-0)^{2}-(-2 - 6)^{2}}}}

\Rightarrow{\sf{d= \sqrt{(-8)^{2}}}}

\Rightarrow{\sf{d= \sqrt{64}}}

\Rightarrow{\sf{d= 8}}

Hence, the distance between the points (0, 6 )and (0, - 2 ) is units.

________________________

Similar questions