Math, asked by mdbadaruddin17, 10 months ago

The distance between the points (2, 1) and (3, 2) is
a)2units
b)√2units
c)√5units
d)√3units​

Answers

Answered by guru9239
0

Answer:

THE ANSWER IS

 \sqrt{2}

Step-by-step explanation:

 \sqrt{ {(x2 - x1)}^{2} +  ({y2 - y1}^{2})   }  \\   \sqrt{ {(3 - 2)}^{2} +  {(2 - 1)}^{2}  }  \\  \sqrt{ {(1)}^{2} + {(1)}^{2}  }  \\  \sqrt{1 + 1}  \\  \sqrt{2}  \\

HOPE IT WILL HELP YOU

PLZZ MARK AS BRAINLIST

PLZZ MARK AS BRAINLIST

PLZZ MARK AS BRAINLIST

Answered by Anonymous
8

Answer :

  • Distance is √2 units

Explanation :

Use Distance formula :

\longrightarrow \sf{|AB| \: = \: \sqrt{(x_2 \: - \: x_1)^2 \: + \: (y_2 \: - \: y_1)^2}} \\ \\ \longrightarrow \sf{|AB| \: = \: \sqrt{(3 \: - \: 2)^2 \: + \: (2 \: - \: 1)^2}} \\ \\ \longrightarrow \sf{|AB| \: = \: \sqrt{(1)^2 \: + \: (1)^2}} \\ \\ \longrightarrow \sf{|AB| \: = \: \sqrt{1 \: + \: 1}} \\ \\ \longrightarrow \sf{|AB| \: = \: \sqrt{2}} \\ \\ \underline{\underline {\sf{Distance \: between \: points \: is \: \sqrt{2} \: units}}}

____________________

Additional Information

  • Section formula, when the line segment is in two ratio of m1:m2

\sf{x =  \dfrac{(m_1x_2 + m_2x_1)}{(m_1+m_2)}}

And,

\sf{y = \dfrac{(m_1y_2 + m_2y_1)}{(m_1+m_2)}}

  • Mid Point formula is \sf{\dfrac{(x_1+x_2)}{2} and \dfrac{(y_1+y_2)}{2}}

  • The area of the triangle formed by the points \sf{(x_1,y_1)(x_2,y_2) and (x_3,y_3)} is the numerical value of the expression:

\sf\dfrac{1}{2}[x_1(y_2-y_3)+x_2 (y_3-y_1)+x_3(y_1-y_2)]

Attachments:
Similar questions