English, asked by dmshankar503, 11 months ago

The distance between the points (2,-3) and (k,9) is 13units find k​

Answers

Answered by Anonymous
49

SoluTion:

Given points :

  • \sf{2, -3}

  • \sf{k, 9}

  • Distance = 13 units

We have to find the value of k.

We know that,

\large{\boxed{\sf{\red{Distance\:=\:\sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2}}}}}

Here, \sf{x_{1} = 2, x_{2} = k, y_{1} = -3\:and\:y_{2} = 9}

Putting the values,

: \implies 13 = \sf{\sqrt{(k - 2)^{2} + (9 + 3)^2}}

: \implies 13 = \sf{\sqrt{(k - 2)^{2} + (12)^2}}

Squaring both sides,

: \implies \sf{13^{2} = ( \sqrt{(k - 2)^2 + (12)^{2})^2}}

: \implies \sf{169 = (k - 2)^2 + 144}

: \implies \sf{(k - 2)^{2} = 169 - 144}

: \implies \sf{(k - 2)^{2} = 25}

: \implies \sf{(k - 2) = \sqrt{25}}

: \implies \sf{(k - 2) = 5}

: \implies \sf{k = 5 + 2}

: \implies \blue{\sf{k = 7}}

Hence, value of k is 7.

Similar questions