Math, asked by deeksha280323, 9 months ago

the distance between the points 3,-2 and -3,2 is ​

Answers

Answered by vghnelogi
2

Step-by-step explanation:

answer is √52

we should use the formula √(x2-x1)+(y2-y1)

then we should substitute the value then we will get the answer .

Hope it's helpful to you

Answered by Anonymous
1

Distance between the points AB = 52 (or) 213

Step-by-step explanation:

Given that,

  • A(3, -2)
  • B(-3, 2)

To find,

  • Distance between the points AB.

Formula,

\boxed{ \large{\underline{\rm{\red{ Distance : \sqrt{ (x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}} }}}}}

Let,

  • x1 = 3 ; y1 = - 2
  • x2 = - 3 ; y2 = 2

\sf \implies AB = \sqrt{(-3-3)^{2} + (2-(-2))^{2}}

\sf \implies AB = \sqrt{(-6)^{2} + (2+2)^{2}}

\sf \implies AB = \sqrt{(-6)^{2} + (4)^{2}}

\sf \implies AB = \sqrt{36 + 16}

\sf \implies AB = \sqrt{52} \: \:  (or) \:  \: 2 \sqrt{13}

\underline{\boxed{\rm{\purple{\therefore Distance\:between\:AB : \sqrt{52} \:(or)\:2\sqrt{13}.}}}}\:\orange{\bigstar}

Related formulae :

\bigstar \boxed{\large{\underline{\rm{\red{ Mid-Point : \Bigg ( \cfrac{x_{1} + x_{2}}{2} , \cfrac{y_{1} + y_{2}}{2} \Bigg) }}}}}

\bigstar \boxed{\large{\underline{\rm{\red{ Section\:Formula : \Bigg( \cfrac{m_{1}x_{2} + m_{2}x_{1}}{m_{1} + m_{2}} , \cfrac{m_{1}y_{2} + m_{2}y_{1}}{m_{1} + m_{2}} \Bigg) }}}}}

\bigstar \boxed{\large{\underline{\rm{\red{ Area\:of\:Triangle : \triangle = \cfrac{1}{2} \Bigg | x_{1}(y_{2} - y_{3}) + x_{2}(y_{3} - y_{1}) + x_{3}(y_{1} - y{2}) \Bigg |}}}}}

\bigstar \boxed{\large{\underline{\rm{\red{ Slope = \cfrac{y_{2} - y _ {1}}{x_{2} - x_{1}}}}}}}

______________________________________________________

Similar questions