Math, asked by BrainlyModerator, 5 months ago

The distance between the points (a cosθ + b sinθ,0) and (0, a sinθ - b cosθ) is:-
a²+b² \\ \  \textless \ br /\  \textgreater \ a+b \\ \  \textless \ br /\  \textgreater \ a²-b²
 \sqrt{ {a}^{2} +  {b}^{2}  }

Answers

Answered by tennetiraj86
4

Answer:

\huge{\boxed{\rm{\red{answer=√(a²+b²) units}}}}

Step-by-step explanation:

Given:-

Given points are (a cosθ + b sinθ,0) and

(0, a sinθ - b cosθ)

To find:-

The distance between the given two points

Solution:-

Given points are (a cosθ + b sinθ,0) and

(a cosθ + b sinθ,0) and (0, a sinθ - b cosθ)

Let (x1,y1)=(a cosθ + b sinθ,0)

=>x1=a cosθ + b sinθ and y1=0

(x2,y2)=(0, a sinθ - b cosθ)

=>x2=0 and y2=a sinθ - b cosθ

Using formula:-

If (x1,y1) and (x2,y2) are two points then the distance between them is

{(x2-x1)²+(y2-y1)²} units

Now,

=>{(0-(a cosθ + b sinθ)²+(a sinθ - b cosθ-0)²}

=>{(-a cosθ -b sinθ)²+(a sinθ - b cosθ)²}

=>(a²cos²θ+sin²θ+2abcosθsinθ+sin²θ+

cos²θ-2absinθcosθ)

=>{(sin²θ+cos²θ)+(sin²θ+cos²θ)-(0)sinθcosθ}

=>{(1)+(1)}

=>(a²+)

Answer:-

Distance between two points =(a²+) units

Similar questions