The distance between the points (a cosθ + b sinθ,0) and (0, a sinθ - b cosθ) is:-
Answers
Answered by
4
Answer:
Step-by-step explanation:
Given:-
Given points are (a cosθ + b sinθ,0) and
(0, a sinθ - b cosθ)
To find:-
The distance between the given two points
Solution:-
Given points are (a cosθ + b sinθ,0) and
(a cosθ + b sinθ,0) and (0, a sinθ - b cosθ)
Let (x1,y1)=(a cosθ + b sinθ,0)
=>x1=a cosθ + b sinθ and y1=0
(x2,y2)=(0, a sinθ - b cosθ)
=>x2=0 and y2=a sinθ - b cosθ
Using formula:-
If (x1,y1) and (x2,y2) are two points then the distance between them is
√{(x2-x1)²+(y2-y1)²} units
Now,
=>√{(0-(a cosθ + b sinθ)²+(a sinθ - b cosθ-0)²}
=>√{(-a cosθ -b sinθ)²+(a sinθ - b cosθ)²}
=>√(a²cos²θ+b²sin²θ+2abcosθsinθ+a²sin²θ+
b²cos²θ-2absinθcosθ)
=>√{a²(sin²θ+cos²θ)+b²(sin²θ+cos²θ)-(0)sinθcosθ}
=>√{a²(1)+b²(1)}
=>√(a²+b²)
Answer:-
Distance between two points =√(a²+b²) units
Similar questions