The distance between the points (a cos + b sin, 0) and (0, a sin - b cos ), is:
Answers
Answered by
21
Let
- A = (a cosθ + b sinθ, 0)
- B = (0, a sinθ - b cosθ)
Applying distance formula,
AB² = (x₂ - x₁)² + (y₂ - y₁)²
⇒ AB² = (0 - a cosθ - b sinθ)² + (a sinθ - b cosθ - 0)²
→ AB² = (-a cosθ - b sinθ)² + (a sinθ - b cosθ)²
➝ AB² = [(-a cos²θ) + (-b sinθ)² + 2(-a cosθ)(-b sinθ)]
+ (a²sin²θ + b²cos²θ - 2ab.sinθ.cosθ)
➝ AB² = a²cos²θ + b²sin²θ + 2ab.sinθ.cosθ + a²sin²θ + b²cos²θ - 2ab.sinθ.cosθ
Cancelling + 2ab.sinθ.cosθ and - 2ab.sinθ.cosθ,
AB² = a²cos²θ + b²sin²θ + a²sin²θ + b²cos²θ
→ AB² = a²(sin²θ + cos²θ) + b²(sin²θ + cos²θ)
Since sin²θ + cos²θ = 1,
AB² = a² + b²
→ AB = √a² + b²
Similar questions
Environmental Sciences,
1 month ago
English,
4 months ago
History,
10 months ago
Business Studies,
10 months ago