Math, asked by sahudhananjay240, 4 months ago

The distance between the points (a cos   + b sin, 0) and (0, a sin  - b cos ), is:​

Answers

Answered by Aryan0123
21

Let

  • A = (a cosθ + b sinθ, 0)
  • B = (0, a sinθ - b cosθ)

\\

Applying distance formula,

\boxed{\sf{AB = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}} }}\\\\

AB² = (x₂ - x₁)² + (y₂ - y₁)²

⇒ AB² = (0 - a cosθ - b sinθ)² + (a sinθ - b cosθ - 0)²

→ AB² = (-a cosθ - b sinθ)² + (a sinθ - b cosθ)²

➝ AB² = [(-a cos²θ) + (-b sinθ)² + 2(-a cosθ)(-b sinθ)]

          + (a²sin²θ + b²cos²θ - 2ab.sinθ.cosθ)

➝ AB² = a²cos²θ + b²sin²θ + 2ab.sinθ.cosθ + a²sin²θ + b²cos²θ - 2ab.sinθ.cosθ

\\

Cancelling + 2ab.sinθ.cosθ and - 2ab.sinθ.cosθ,

\\

AB² = a²cos²θ + b²sin²θ + a²sin²θ + b²cos²θ

→ AB² = a²(sin²θ + cos²θ) + b²(sin²θ + cos²θ)

\\

Since sin²θ + cos²θ = 1,

AB² = a² + b²

→ AB = a² + b²

\\

\therefore \underline{\boxed{\bf{AB = \sqrt{a^{2} + b^{2} } }}}\\

Similar questions