Math, asked by Avartanathlay, 1 year ago

The distance between the points A (x, -1) and B (3, 2) is 5 units, find 'x'​

Answers

Answered by SparklingBoy
4

Answer:

Given that distance between A(x, -1) and B(3, 2) is 5 units.

we can solve this question that is find the value of x by using distance formula As given below.

So, using distance formula

 \sqrt{ {( x- 3)}^{2}  + {( - 1 - 2)}^{2}  }  = 5 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  S.B.S. \\  {x}^{2}  + 9 - 6x +  9 = 25 \\  \implies \:  {x}^{2}  - 6x - 7 = 0 \\  \implies {x}^{2}   + x - 7x - 7   = 0\\  \implies x(x + 1) - 7(x + 1) = 0 \\  \implies(x + 1)(x - 7) = 0 \\  \implies \: x =  - 1 \: or \: x = 7

so possible values of x are - 1 and 7.

So, for x = -1, 7

given two points will be 5 unit distance from each other.

We can also verify the result by putting value of x and finding distance between the given points .

Answered by Anonymous
9

\huge \red { \boxed{ \boxed{ \mathsf{ \mid \ulcorner Answer :\urcorner \mid }}}}

Question :-

Distance between the points A(x,-1) and B(3,2) is 5 units, find 'x'

===============================>

Answer :-

We have distance formula

\LARGE{\boxed{\boxed{\green{\sf{|AB| \: =   \: \sqrt{{ {(x_{2} - x_{1})}^{2}  +  {(y_{2} - y_{1})}^{2} }}}}}}}

Where,

x2 = 3

x1 = x

y2 = 2

y1 = -1

And |AB| = 5 units

___________________[Put Values]

\large{\sf{5 \: = \: \sqrt{{(3 \: - \: x)}^{2} \: + \: {(2 \: -(-1))}^{2}}}}

S.B.S

\large{\sf{5^2 \: = \: (3 - x)^{2} \: + \: (2 + 1)^{2}}}

\large{\sf{25 \: = \: 9 \: + \: x^2 \: - \: 6x \: + 9}}

\large{\sf{25 \: = \: x^{2} \: - \: 6x \: + 18}}

\large{\sf{0 \: = \: x^{2} \: - \: 6x \: + 18 \: - \: 25}}

\large{\sf{0 \: = \: x^{2} \: - \: 6x \: - 7}}

\large{\sf{0 \: = \: x^{2} \: + \: x \: - 7x \: - \: 7}}

\large{\sf{0 \: = \: x(x \: + \: 1) \: -7(x \: + \: 1)}}

\large{\sf{0 \: = \: (x \: + \: 1)(x \: - \: 7)}}

__________________________________

\large{\sf{0  \: = \: x \: + \: 1}}

\huge{\implies}{\boxed{\blue{\sf{x \: = \: -1}}}}

OR

\large{\sf{0 \: = \: x \: - \: 7}}

\huge{\implies}{\boxed{\blue{\sf{x \: = \: 7}}}}

Similar questions