the distance between the points (tan a,1), (0,2) is
Answers
Answered by
2
cos
4
x
+
θ
2
sin
4
x
=
θ
1
+θ
2
1
⇒(θ
1
+θ
2
)(
θ
1
cos
4
x
+
θ
2
sin
4
x
)=1
⇒(θ
1
+θ
2
)(
θ
1
cos
4
x
+
θ
2
sin
4
x
)=(sin
2
x+cos
2
x)
2
⇒(θ
1
+θ
2
)(
θ
1
cos
4
x
+
θ
2
sin
4
x
)=sin
4
x+cos
4
x+2sin
2
xcos
2
x
⇒(θ
1
+θ
2
)θ
2
cos
4
x+(θ
1
+θ
2
)θ
1
sin
4
x=θ
1
θ
2
sin
4
x+θ
1
θ
2
cos
4
x+θ
1
θ
2
2sin
2
xcos
2
x
⇒θ
2
2
cos
4
x+θ
1
2
sin
4
x−θ
1
θ
2
2sin
2
xcos
2
x=0
⇒
θ
1
θ
2
cos
4
x+
θ
2
θ
1
sin
4
x−2sin
2
xcos
2
x=0
⇒
⎝
⎛
θ
1
θ
2
cos
2
x
−
θ
2
θ
1
sin
2
x
⎠
⎞
2
=0
⇒tan
2
x=
θ
1
θ
2
Answered by
1
Answer:
Tan a+1
Step-by-step explanation:
distance between two points Answer is Tan a+1
Attachments:
Similar questions