Math, asked by akancha17588, 4 months ago

The distance between the two inner parallel line
segments is 60 m and they are each 106 m long. If
the track is 10 m wide, find :
(i) the distance around the track along its inner edge
(ii) the area of the track.​

Answers

Answered by aryanc3
1

Step-by-step explanation:

Answer

The distance around the track along its inner edge

=EF+HG + circumference of semicircle with diameter EH+circumference of semicircle with diameter FG

circumference of semicircle with diameter EH + Circumference of semicircle with diameter FG

=2×π×30=60πm

∴ The distance around the track along its inner edge

=60π+106+106

=

7

2804

m

∴ Area of track = Area of rectangle ABFE + Area of rectangle HGCD + (Area of semicircle with diameter AD − Area of semicircle with diameter EH) + (Area of semicircle with diameter BC − Area of semicircle with diameter FG)

=(106×10)+(106×10)+(

2

π

×40×40−

2

π

×30×30)+(

2

π

×40×40−

2

π

×30×30)

=2120+2200=4320m

2

Answered by MrAnonymous412
19

 \\  \\☯ \color{red}{\large \rm   \underline{  \:  Question  :- }}\\ \\

The distance between the two inner parallel line

segments is 60 m and they are each 106 m long. If the track is 10 m wide, find :

(i) the distance around the track along its inner edge

(ii) the area of the track.

 \\  \\☯ \color{red}{\large \rm \underline{ \:  Solution :- }}\\ \\

 \\  \\  \sf \: At \:  first,  \\  \sf We \:  have \:  to \:  find \:  the \:  radius \:  of \:  the \:  inner \:  track  : \\  \\

 \\  \\  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  Radius = \frac{ Diameter}{2} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: =    \sf\frac{60}{2}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \ \sf \:  \boxed{ \sf \: Radius = 30 \: m} \\  \\

 \\  \\    \sf We \:  have \:  to \:  find \:  the \:  distance \:  of \:  the \:  inner \:  track  : \\  \\

 \\  \\  \sf \: Distance \:  =  \: 2\pi r + length + length \\

 \\  \\  \sf \: Distance \:  =  \: 2\pi (30) + 106 + 106 \\  \\  \sf  \:  \:  \:  \:  \:  \:  = 2\pi(30) + 212 \\ \\   \sf   \boxed{ \sf Distance = 400.57 \: m }\\  \\

Now,

 \\  \\    \sf We \:  have \:  to \:  find \:  the \:  area \:  of \:  the \:  inner \:  track  : \\  \\

 \\  \\ \:  \:   \sf Area \:  = \pi  {r}^{2}  + (length \:  \times  \: breadth) \\   \\  \sf \: \:   = \pi(30) ^{2}  + (106 \times 60) \\  \\  \boxed{ \sf \: Area = 9188.57 \:  {m}^{2} } \\  \\

Now,

 \\  \\    \sf We \:  have \:  to \:  find \:  the \:  area \:  of \:  the \:  whole\:  track  : \\  \\

\\  \\ \:  \:   \sf Area \:  = \pi  {r}^{2}  + (length \:  \times  \: breadth) \\   \\

 \\  \\  \sf \star \:  \:  Radius = 30+10 = 40 m \\  \star \sf \: Width = 60 +10+10 = 60+20 = 80m \\  \\

 \\   \sf\star \: Area = π(40)^2+(160 \times 80 ) \\

 \\  \\   \sf\star \: Area = π(40)^2+(160 \times 80 ) \\  \\  \underline{ {\boxed{ \sf Area = \: 13508.57}}} \\  \\

 \\  \\  \sf \: The  \: area  \: of  \: track  \: is  \\

 \\  \\  \sf \: \:  \:  \:  \:  \:  \:  \:  \:  \:  Area = 13508.57 - 9188.57  \\  \\

 \\  \\ \sf \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{\boxed{\boxed{ \pink{ \sf Area = 4320m ^{2} }} }}\\  \\

 \\  \\  \sf \bold{ Answer :-}  \:\underline{ \:  \: (1) 400.57 m \:  \: (2)4320 m^2 \:  \:  }\\  \\

Similar questions