Physics, asked by somnathdesai149, 2 months ago

the distance between two consecutive bright fringes in a baptism experiment using light of wavelength 6000 A⁰is 0.32mm by how much will the distance change if light of wavelength 4800A⁰is used?​

Answers

Answered by TheValkyrie
96

Answer:

Change in distance = 0.064 mm

Explanation:

Given:

  • Distance between two consecutive bright fringes = 0.32 mm = 0.32 × 10⁻³ m
  • Wavelength of light used = 6000 A⁰ = 6000 × 10⁻¹⁰ m

To Find:

  • Change in distance if light of wavelength 4800 A⁰ or 4800 × 10⁻¹⁰ m is used

Solution:

We know the equation,

\sf \beta=\dfrac{D\lambda}{d}

where β is the fringe width, D is the distance of the screen from the slit , λ is the wavelength of light used and d is the separation between the slits.

Since D and d are constants here,

β ∝ λ

Therefore,

\sf \dfrac{\beta_i}{\beta_f} =\dfrac{\lambda_i}{\lambda_f}

Substitute the given data,

\sf \dfrac{0.32\times 10^{-3}}{\beta_f} =\dfrac{6000\times 10^{-10}}{4800\times 10^{-10}}

\sf \dfrac{0.32\times 10^{-3}}{\beta_f} =\dfrac{6000}{4800}

\sf \dfrac{0.32\times 10^{-3}}{\beta_f} =1.25

\sf \beta_f=\dfrac{0.32\times 10^{-3}}{1.25}

\sf \beta_f=0.256\times 10^{-3}

Therefore change in distance is given by,

\sf \beta_f-\beta_i=0.32\times 10^{-3}-0.256\times 10^{-3}

\sf \implies 0.064\times 10^{-3}\: m\:or\:0.064\:mm

Hence the change in distance is 0.064 mm.

Answered by Itzheartcracer
74

Given :-

The distance between two consecutive bright fringes in a baptism experiment using light of wavelength 6000 A⁰is 0.32mm

To Find :-

how much will the distance change if light of wavelength 4800A⁰is used?​

Solution :-

We know that

\sf \beta _{i} \propto \lambda_{i}\; and \; \beta_{f}\propto \lambda_{f}

\sf \dfrac{0.32\times 10^{-3}}{\beta_{f}} = \dfrac{6000 \times 10^{-10}}{4800 \times 10^{-10}}

\sf \dfrac{0.32\times10^{-3}}{\beta_{f}} = \dfrac{6000}{4800}

\sf\dfrac{0.32\times 10^{-3}}{\beta_{f}} = \dfrac{60}{48}

\sf\dfrac{0.32\times 10^{-3}}{\beta_{f}} = 1.25

\sf 0.32\times 10^{-3} = 1.25\times\beta_{f}

\sf \dfrac{0.32\times 10^{-3}}{1.25}=\beta_{f}

\sf 0.25 \times 10^{-3}=\beta_{f}

Now

\sf Difference = 0.32 \times 10^{-3}-0.25\times 10^{-3}

\sf Difference = 0.7\times 10^{-3}\;m

Similar questions