the distance of line 12x+5y=7 from origin
Answers
Answered by
2
Answer:
hi friends
Step-by-step explanation:
The answer is here,
The length of the perpendicular from the origin to the line 12x+5y+7 =0.
= > \: \frac{ |c| }{ \sqrt{ {a}^{2} + {b}^{2} } }=>a2+b2∣c∣
Here , c = constant.
a= x- coefficient.
b=y- coefficient.
= > \: \frac{ |7| }{ \sqrt{ {5}^{2} + {12}^{2} } }=>52+122∣7∣
= > \: \frac{7}{ \sqrt{ {13}^{2} } }=>1327
= > \: \frac{7}{13}=>137
So, The perpendicular distance from origin to the point 12x+5y+7 =0. is 7/13 units.
:-)Hope it help u.
Similar questions