Math, asked by uday60182, 1 month ago

The distance of the line 2x - 3y = 4 from the point (1, 1) measured parallel to the line x + y = 1 is​

Attachments:

Answers

Answered by kashvichaurasia819
0

Answer:

The distance of the lines 2x - 3y = 4 from the point (1, 1) measured parallel to the line x + y = 1 is. The point of intersection is (2, 0). Hence option (1) is the answer

Answered by TrustedAnswerer19
6

{\orange{ \boxed{ \boxed{ \begin{array}{cc}  \bf \to \: given \:  :  \\  \\  \rm \: 2x - 3y = 4 \:  \:  \:  -  -  - (1) \\  \\  \rm \: x + y = 1 \:  \:  \:  \:  -  -  -  - (2) \\  \\  \sf \: let \: assume \: that \\  \\  \rm \: the \: equation \: of \: line \: parallel \: to \: (2) \\  \rm \: will \: be \:  \:  \\  \\  \rm \: x + y + k = 0 \:  \:  \:  -  -  -  - (3) \\  \\  \sf \: again \: given \: that \\  \\  \rm \: eqn(3) \: passes \: through \: the \: point \: (1,1) \\  \\  \sf \: put \: this \: in \: eqn.(3) =  >  \\  \\  \rm \: 1 + 1 + k = 0 \\  \\  =  >  \rm \: k =  - 2 \\  \\  \sf \: now \: eqn.(3) \: can \: be \: written \: as \\  \\  \rm \: x + y - 2 = 0 \:  \:  \:  \:  \:  -   -  -  (4) \\  \\  \sf \: now \: we \: have \: to \: solve \: eqn.(1) \: and \: eqn.(4) \\  \\  \sf \: from \: eqn.(4) =  >   \\  \rm \: y = 2 - x \:  \:  \:  -  -  - (5) \\  \sf \: substitute \: this \: in \: eqn.(1) =  >  \\  \\  \rm \: 2x - 3(2 - x) = 4 \\  \\  =  > 2x - 6 + 3x = 4 \\  \\  =  > 5x = 10 \\  \\  =  > x = 2 \\  \\  \sf \: put \: this \: in \: eqn.(5) =  >  \\  \\ y = 2 - 2 \\  \\  =  > y = 0 \\  \\  \therefore \sf \: intersection \: point \: of \: eqn.(1) \: and \: eqn.(4) \\  \sf \: is \: (2,0) \\  \\  \\  \sf \: now \: distance \: between \: (1,1) \: and \: (2,0) \: is \:  \\  \\  \rm \: d =  \sqrt{ {(1 - 2)}^{2}  +  {(1 - 0)}^{2} } \\  \\  =  \sqrt{ {( - 1)}^{2}  +  {1}^{2} } \\  \\  =  \sqrt{1 + 1}   \\  \\  =  \sqrt{2 } \: unit \\  \\  \rm =  \: answer  \end{array}}}}}

Similar questions