Math, asked by shivamhans272003, 2 months ago

the distance of the line x+3=y+4=z+5 from the origin is​

Answers

Answered by pulakmath007
4

SOLUTION

TO DETERMINE

The distance of the line x + 3 = y + 4 = z + 5 from the origin

CONCEPT TO BE IMPLEMENTED

If equation of any line is

\displaystyle\sf{ \frac{x - a}{l} =  \frac{y - b}{m}  =  \frac{z - c}{n}  }

 \sf{Then \:  the \:  distance  \: of \:  the \:  line  \: from \:  the \:  point \:  P( \alpha , \beta , \gamma ) \:  \: is }

\displaystyle\sf{  =  \sqrt{ \bigg[ \: {( \alpha  - a)}^{2}  +  {( \beta  - b)}^{2}    +  {( \gamma  - c)}^{2} -  \frac{ \{ \: l(  \alpha  - a)  + m( \beta  - b) + n( \gamma  - c)\}}{ {l}^{2} +  {m}^{2}  +  {n}^{2}  }  \:  \bigg]} }

EVALUATION

Here the given equation of the line is

x + 3 = y + 4 = z + 5

Comparing with the general equation

\displaystyle\sf{ \frac{x - a}{l} =  \frac{y - b}{m}  =  \frac{z - c}{n}  }

We get

a = - 3 , b = - 4 , c = - 5

l = m = n = 1

Now the given point is origin

 \sf{ \alpha  = 0, \beta  = 0, \gamma  = 0}

Hence the required distance

\displaystyle\sf{  =  \sqrt{ \bigg[ \: {( 0   + 3)}^{2}  +  {( 0   + 4)}^{2}    +  {( 0   + 5)}^{2} -  \frac{ \{ \: 1.(  0  + 3)  + 1.( 0  + 4) + 1.( 0  + 5)\}}{ {1}^{2} +  {1}^{2}  +  {1}^{2}  }  \:  \bigg]} \:  \:  \: unit }

\displaystyle\sf{  =  \sqrt{ \bigg[ \: {3}^{2}  +  {4}^{2}    +  {5}^{2} -  \frac{ ( \: 3 + 4 + 5)}{ 3  }  \:  \bigg]} \:  \:  \: unit }

\displaystyle\sf{  =  \sqrt{ \bigg[ 50 -  \frac{ 12}{ 3  }  \:  \bigg]} \:  \:  \: unit }

\displaystyle\sf{  =  \sqrt{ \bigg[ 50 -  4 \:  \bigg]} \:  \:  \: unit }

\displaystyle\sf{  =  \sqrt{ 46} \:  \:  \: unit }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. a butterfly is moving in a straight line in the space.

let this path be denoted by a line l whose equation is x-2/2=2-y...

https://brainly.in/question/30868719

2. Find the distance of point p(3 4 5) from the yz plane

https://brainly.in/question/8355915

Similar questions