Math, asked by palakporwad, 6 months ago

The distance of the point (20,15) from origin is ___
a) 35 units b) 5units c) 25 units d) 0 units

Answers

Answered by Anonymous
3

Answer:

This implies that

x2+2ax=4x−4a−13

or

x2+2ax−4x+4a+13=0

or

x2+(2a−4)x+(4a+13)=0

Since the equation has just one solution instead of the usual two distinct solutions, then the two solutions must be same i.e. discriminant = 0.

Hence we get that

(2a−4)2=4⋅1⋅(4a+13)

or

4a2−16a+16=16a+52

or

4a2−32a−36=0

or

a2−8a−9=0

or

(a−9)(a+1)=0

So the values of a are −1 and 9.

Answered by Anonymous
10

Answer:

This implies that

x2+2ax=4x−4a−13

or

x2+2ax−4x+4a+13=0

or

x2+(2a−4)x+(4a+13)=0

Since the equation has just one solution instead of the usual two distinct solutions, then the two solutions must be same i.e. discriminant = 0.

Hence we get that

(2a−4)2=4⋅1⋅(4a+13)

or

4a2−16a+16=16a+52

or

4a2−32a−36=0

or

a2−8a−9=0

or

(a−9)(a+1)=0

So the values of a are −1 and 9.

Step-by-step explanation:

Similar questions